Update cookies preferences

E-book: Surface- and Tip-Enhanced Raman Scattering Spectroscopy: Bridging Theory and Applications

Edited by , Edited by , Edited by , Edited by
  • Format: PDF+DRM
  • Pub. Date: 18-Oct-2024
  • Publisher: Springer Nature
  • Language: eng
  • ISBN-13: 9789819758180
  • Format - PDF+DRM
  • Price: 271,69 €*
  • * the price is final i.e. no additional discount will apply
  • Add to basket
  • Add to Wishlist
  • This ebook is for personal use only. E-Books are non-refundable.
  • Format: PDF+DRM
  • Pub. Date: 18-Oct-2024
  • Publisher: Springer Nature
  • Language: eng
  • ISBN-13: 9789819758180

DRM restrictions

  • Copying (copy/paste):

    not allowed

  • Printing:

    not allowed

  • Usage:

    Digital Rights Management (DRM)
    The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.  To read this e-book you have to create Adobe ID More info here. Ebook can be read and downloaded up to 6 devices (single user with the same Adobe ID).

    Required software
    To read this ebook on a mobile device (phone or tablet) you'll need to install this free app: PocketBook Reader (iOS / Android)

    To download and read this eBook on a PC or Mac you need Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

    You can't read this ebook with Amazon Kindle

This book describes recent progress in the mechanistic studies and applications of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). In this book, various novel techniques in SERS and TERS such as UV resonance TERS, electrochemical TERS, and three-dimensional SERS imaging are outlined. A number of new applications of SERS and TERS such as those to photonics, nanotechnology, microfluidics, and medical diagnosis along with future perspectives are also discussed. Finally, the applications of new data analysis, models, and machine learning in SERS and TERS studies are reviewed. The novelty of this book is the forming of a new bridge between the theory and applications. Also, the importance of chemical mechanism and that of semiconductor-enhanced Raman scattering is emphasized. The main audiences are researchers in academia, research institutes, companies, and graduate students looking for a comprehensive book on the latest studies of SERS and TERS.

Basics of SERS and TERS.- Plasmon enhanced spectroscopy and
photocatalysis.- Basics and frontiers of electromagnetic mechanism of SERS
hotspots.- Chemical mechanism of SERS.- Semiconductor-enhanced Raman
scattering: enhancement mechanism and substrate design.- Towards reliable and
practical SERS.- State-of-the-art tip-enhanced Raman scattering.- Advances in
machine learning for SERS analysis.- Applications of SERS to material
sciences and analytical chemistry.- Wearable surface-enhanced Raman
spectroscopy.- Non-plasmonic metal-oxide nanostructures for SERS
applications.- Principles, characteristics and applications of
electrochemical Surface-Enhanced Raman Spectroscopy.- Monitoring
plasmon-assisted catalysis by SERS.- Plasmonic metal-semiconductor hybrids as
substrates for photo-induced surface Raman enhancement.- Applications of SERS
to biomedical sciences.- SERS for precision medicine: A promising approach.-
SERS bioanalysis based on tagging and responsive probes.- Gap-enhanced Raman
tags (GERTs): synthesis, optical properties, and applications.- SERS for
diagnostics and forensics: Selected past, present and future highlights.-
Surface-enhanced Raman spectroscopy in clinical point-of-care testing.-
Advanced medical SERS applications.- Analytical SERS for liquid biopsy
biomarkers detection.- SORS and SESORS biomedical applications.- Recent
advances in SERS-based biomedical diagnostics of COVID-19.- TERS studies.-
Ĺngström-resolved tip-enhanced Raman spectroscopy.- Nanoscale imaging of
photocatalytic processes using tip-enhanced Raman spectroscopy.- Tip-enhanced
Raman microscopy: Theory, practice, and applications for nanomaterials
visualization and characterization.
Prof. Prochazka received his Ph.D. from Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic and University Pierre et Marie Curie, Paris VI, France in 1997. His research interests are focused on Raman/SERS spectroscopy of biologically important molecules, designing/testing new metallic nanoparticles/nanostructures for SERS, plasmon-enhanced spectroscopies and biosensing. He is author of monograph "Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications", Springer (2016), one book chapter and 70 papers in IF Journals including Angewandte Chemie, Chem. Rev., J. Mat. Chem. C and Sci. Rep.





 





Prof. Kneipp received her Dr. rer. nat. from Free University of Berlin in 2002, after having conducted her dissertation work at Robert-Koch Institute Berlin. After postdoctoral research in Rotterdam, Princeton, and Berlin, she was appointed at Humboldt-Universität zu Berlin as assistant professor of Analytical Chemistry in 2008 and as full professor (W3) of Physical Chemistry in 2012. Her research interests are in SERS of complex samples, multimodal microspectroscopy, basic aspects of plasmonic enhancement in multiphoton excitation, and plasmonic catalysis. She co-authored 143 peer-reviewed papers and serves as Associate Editor for the Journal of Raman Spectroscopy (Wiley), as Editorial Co-Chair for Analysis & Sensing (ChemistryEurope), as well as on the editorial board of Vibrational Spectroscopy (Elsevier). She co-edited a book in 2008 with Wiley-Blackwell on Biomedical Vibrational Spectroscopy.





 





Prof. Zhao received his Ph.D. from Jilin University in 1992. His research interests include development of SERS-active semiconducting materials and SERS-based applications in biomedicine. He contributed to 7 books including the book Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years ofEnhanced Raman Signals, World Scientific, 2018. He published 500 papers in journals such as Nature Reviews Methods Primers, Angewandte Chemie, and Chemical Science. He has 30 years of teaching experience at physical chemistry and analytical chemistry.





 





Prof. Ozaki received his Ph.D. from Osaka University in 1978. His research interests include basic researches and applications of surface-enhanced Raman scattering and tip-enhanced Raman scattering, biomedical applications of Raman spectroscopy, basic and applications of near-infrared spectroscopy and far-ultraviolet spectroscopy. He is currently professor emeritus of Kwansei Gakuin University. He is the authors of Yukihiro Ozaki, Zhong-Qun Tian, Recent Developments in Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals World Scientific, 2018, Y. Ozaki, M. Wojcik, J. Popp, eds., "Molecular Spectroscopy-Quantum Chemistry Approach", Wiley-VCH (2019),Y. Ozaki, C. Huck, S. Tsuchikawa, and S. B. Engelsen eds., "Near-Infrared Spectroscopy, Theory, Spectral Analysis, Instrumentation, and Applications", Springer (2020), and many more. He published more than 1000 articles in internationally renowned journals such as Angewandte Chemie, Nano Lett., Chem. Rev. He won many awards such as Pittsburgh Spectroscopy Award in 2019, Charles Mann Award in 2020, and Medal of Ioannes Marcus Marci in 2022. Ozaki has teaching experience at Kwansei Gakuin University and The Jikei University of School of Medicine for more than 45 years.