|
|
xii | |
|
|
1 | (34) |
|
1 Ultra-dense Networks and Sliced Network Services |
|
|
3 | (20) |
|
|
|
|
3 | (8) |
|
|
5 | (6) |
|
1.2 Cloud Computational Platforms and Networking |
|
|
11 | (3) |
|
1.3 Orchestrators and 5GC |
|
|
14 | (3) |
|
1.3.1 Boarding Virtual Network Functions |
|
|
15 | (1) |
|
1.3.2 Orchestrator Layers |
|
|
16 | (1) |
|
1.4 SDN and Overlaid Networks |
|
|
17 | (2) |
|
1.5 Monitoring Service and Platform |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.5.2 Application Deployment Options |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (3) |
|
2 Ultra-dense Cloud Radio Access Network Architecture |
|
|
23 | (12) |
|
|
|
|
|
|
|
23 | (2) |
|
2.2 B5G Ultra-dense Cloud Radio Access Network Architecture |
|
|
25 | (1) |
|
2.3 Fronthauling via mmWave in a UDCRAN with Phantom Cells |
|
|
26 | (2) |
|
2.4 Fronthauling via Unlicensed Spectrum |
|
|
28 | (1) |
|
2.5 Fronthauling via Terrestrial FSO |
|
|
28 | (2) |
|
2.6 Fronthauling via UAV-Mounted FSO |
|
|
30 | (1) |
|
2.7 Comparison and Research Issues in B5G UDCRAN |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (3) |
|
Part II Physical Layer Design |
|
|
35 | (106) |
|
3 NOMA-Based Ultra-dense Networks |
|
|
37 | (14) |
|
|
|
|
|
37 | (1) |
|
3.2 Overview of NOMA-Enabled HUDNs |
|
|
38 | (2) |
|
|
38 | (1) |
|
|
39 | (1) |
|
3.2.3 Understanding NOMA in HUDNs |
|
|
39 | (1) |
|
3.3 A Unified NOMA Framework for HUDNs |
|
|
40 | (5) |
|
|
40 | (2) |
|
3.3.2 Uplink and Downlink Communications |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.4 Case Studies for NOMA-Enabled HUDNs |
|
|
45 | (3) |
|
3.4.1 User Association in NOMA-Enabled HUDNs |
|
|
45 | (1) |
|
3.4.2 Resource Sharing in NOMA-Enabled HUDNs |
|
|
46 | (2) |
|
3.5 Research Challenges in NOMA-Enabled HUDNs |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
4 Physical Layer Security in Ultra-dense Networks |
|
|
51 | (13) |
|
|
|
|
|
|
|
51 | (1) |
|
4.2 Key Features in Ultra-dense Networks |
|
|
52 | (1) |
|
4.3 Ultra-dense Network and Physical Layer Security Are a Good Match |
|
|
53 | (4) |
|
4.4 Physical Layer Security for Safeguarding IoT and V2X Transmissions |
|
|
57 | (1) |
|
4.5 Physical Layer Security for Safeguarding Edge Computing Service |
|
|
57 | (2) |
|
4.6 Physical Layer Security for Safeguarding Edge Caching Service |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
61 | (3) |
|
5 Millimeter-Wave Multiantenna Ultra-dense Networks |
|
|
64 | (20) |
|
|
|
|
|
5.1 Introduction for Ultra-dense Networks in Millimeter-Wave Frequencies Band |
|
|
64 | (2) |
|
5.1.1 Next-Generation Network -- UDN |
|
|
64 | (1) |
|
5.1.2 Millimeter-Wave Networks |
|
|
65 | (1) |
|
5.1.3 MmWave Antenna Pattern |
|
|
65 | (1) |
|
5.2 Approach and Contributions |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (8) |
|
5.4.1 Simplified LoS mmWave Model |
|
|
74 | (1) |
|
5.4.2 Uniform Linear Array |
|
|
75 | (2) |
|
5.5 Numerical Results and Discussions |
|
|
77 | (4) |
|
5.5.1 Average Achievable Secrecy Rate with UPA |
|
|
77 | (3) |
|
5.5.2 Average Achievable Secrecy Rate with ULA |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (2) |
|
6 Interference Management in Ultra-dense Networks |
|
|
84 | (23) |
|
|
|
|
|
84 | (1) |
|
6.2 Features of Interference in UDNs |
|
|
85 | (7) |
|
6.2.1 Reduced Difference of Interference Levels |
|
|
85 | (2) |
|
6.2.2 Hard-Estimated Interference |
|
|
87 | (3) |
|
6.2.3 Interference Correlation |
|
|
90 | (2) |
|
6.3 A Brief Overview of Interference Management Techniques |
|
|
92 | (3) |
|
6.3.1 Interference Avoidance |
|
|
93 | (1) |
|
6.3.2 Interference Cancellation |
|
|
94 | (1) |
|
6.3.3 Interference Coordination |
|
|
94 | (1) |
|
6.4 Implementation of Interference Management in UDNs |
|
|
95 | (2) |
|
6.4.1 Interference Management Entity for UDNs |
|
|
96 | (1) |
|
6.5 Efficient Interference Management Strategy in UDNs |
|
|
97 | (4) |
|
6.5.1 Implementation Detail |
|
|
97 | (2) |
|
6.5.2 Performance Evaluation |
|
|
99 | (2) |
|
6.6 Open Issues of Interference Management |
|
|
101 | (3) |
|
6.6.1 Interference Management in mmWave Systems |
|
|
101 | (1) |
|
6.6.2 Interference Management in NOMA Systems |
|
|
101 | (2) |
|
6.6.3 Self-Organizing Interference Management |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (3) |
|
7 3D-Based Base Station Deployment in Ultra-dense Networks |
|
|
107 | (20) |
|
|
|
|
|
107 | (2) |
|
|
109 | (5) |
|
7.2.1 Network Description |
|
|
109 | (2) |
|
7.2.2 Base Station Association Rule |
|
|
111 | (3) |
|
|
114 | (4) |
|
7.3.1 Network Interference |
|
|
114 | (1) |
|
7.3.2 Coverage Probability |
|
|
115 | (3) |
|
7.3.3 Area-Spectral Efficiency |
|
|
118 | (1) |
|
7.4 Numerical Results and Discussions |
|
|
118 | (6) |
|
7.4.1 Performance of the Single-Layer UDN |
|
|
118 | (4) |
|
7.4.2 Performance of the Multilayer UDN |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
124 | (3) |
|
8 Power Control in Full-duplex Ultra-dense Heterogeneous Networks |
|
|
127 | (14) |
|
|
|
|
|
|
127 | (2) |
|
|
129 | (6) |
|
8.2.1 Problem Formulation |
|
|
130 | (5) |
|
8.3 Simulation and Discussion |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
138 | (3) |
|
Part III Resource Allocation and Network Management |
|
|
141 | (160) |
|
9 Delay and Traffic Matching in Ultra-dense Networks |
|
|
143 | (21) |
|
|
|
|
9.1 System Model for Spatiotemporal Traffic |
|
|
143 | (4) |
|
9.1.1 Models Based on Stochastic Geometry and Queueing Theory |
|
|
144 | (1) |
|
|
145 | (1) |
|
9.1.3 Bounding Approaches |
|
|
146 | (1) |
|
9.2 Delay Analysis in Ultra-dense Networks |
|
|
147 | (9) |
|
9.2.1 Challenges of Delay Analysis in UDNs |
|
|
149 | (2) |
|
9.2.2 Promising Approaches |
|
|
151 | (5) |
|
9.3 Traffic Matching in Ultra-dense Networks |
|
|
156 | (7) |
|
9.3.1 Need for Matching the Traffic in UDNs |
|
|
157 | (1) |
|
9.3.2 Useful Approaches to Match Traffic |
|
|
158 | (4) |
|
9.3.3 Handle Spatiotemporal Traffic in UDNs |
|
|
162 | (1) |
|
|
163 | (1) |
|
10 Traffic Offloading in Software Defined Ultra-dense Networks |
|
|
164 | (29) |
|
|
|
|
|
|
|
164 | (2) |
|
10.2 Architecture of Software-Defined Wireless Networks |
|
|
166 | (1) |
|
10.3 Contract Formulation for Traffic Offloading |
|
|
167 | (4) |
|
10.3.1 Transmission Model Formulation |
|
|
168 | (1) |
|
10.3.2 Economic Model Formulation |
|
|
169 | (2) |
|
10.4 Contract Design for Traffic Offloading |
|
|
171 | (4) |
|
10.4.1 Contract Design with Information Asymmetry |
|
|
172 | (2) |
|
10.4.2 Contract Design without Information Asymmetry |
|
|
174 | (1) |
|
10.4.3 Contract Design by Linear Pricing |
|
|
174 | (1) |
|
10.5 Conditions for Contract Feasibility |
|
|
175 | (5) |
|
|
180 | (9) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (3) |
|
11 Resource Allocation in Ultra-dense Networks |
|
|
193 | (16) |
|
|
|
|
|
|
11.1 Motivation and Scopes |
|
|
193 | (1) |
|
|
194 | (3) |
|
|
197 | (1) |
|
11.4 Overlapped UC Clustering |
|
|
198 | (2) |
|
11.5 Resource Allocation Solution |
|
|
200 | (3) |
|
11.5.1 Solution Portrayal |
|
|
200 | (3) |
|
|
203 | (1) |
|
11.6 Numerical Simulations |
|
|
203 | (4) |
|
11.6.1 The Performance versus the Network Density |
|
|
204 | (2) |
|
11.6.2 The Performance versus the Number of RBs |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (2) |
|
12 Wireless Edge Caching in Ultra-dense Networks |
|
|
209 | (30) |
|
|
|
|
|
209 | (1) |
|
12.2 Caching at the Transmitter Side |
|
|
210 | (18) |
|
12.2.1 Deterministic Caching |
|
|
211 | (4) |
|
|
215 | (7) |
|
|
222 | (6) |
|
12.3 Caching at the Receiver Side |
|
|
228 | (9) |
|
12.3.1 Caching for Transmit Load Reduction: Coded Multicast |
|
|
228 | (5) |
|
12.3.2 Caching for Playback Delay Reduction in Video Streaming Services |
|
|
233 | (4) |
|
|
237 | (2) |
|
13 User Association in Ultra-dense Networks |
|
|
239 | (20) |
|
|
|
|
|
|
239 | (1) |
|
13.2 System Model and Problem Formulation |
|
|
240 | (3) |
|
|
240 | (1) |
|
13.2.2 Problem Formulation |
|
|
241 | (2) |
|
13.3 Lagrangian Dual Decomposition |
|
|
243 | (7) |
|
13.3.1 Dual Decomposition |
|
|
244 | (2) |
|
13.3.2 Energy Efficiency and Power Allocation |
|
|
246 | (2) |
|
13.3.3 Iterative Gradient Algorithm |
|
|
248 | (1) |
|
13.3.4 Complexity Analysis |
|
|
249 | (1) |
|
13.4 Simulation Results and Discussion |
|
|
250 | (5) |
|
|
255 | (1) |
|
|
256 | (3) |
|
14 UAV-Based Ultra-dense Networks |
|
|
259 | (18) |
|
|
|
|
|
|
|
260 | (2) |
|
14.1.1 Air-to-Ground Channel |
|
|
260 | (1) |
|
14.1.2 Cellular BS-to-UAV Channel |
|
|
261 | (1) |
|
14.2 UAV-Enabled Base Stations |
|
|
262 | (5) |
|
|
262 | (3) |
|
14.2.2 Dynamic Trajectory Planning |
|
|
265 | (2) |
|
|
267 | (2) |
|
14.4 UAV-Enabled Energy Transfer |
|
|
269 | (3) |
|
14.4.1 Static Time Scheduling |
|
|
269 | (1) |
|
14.4.2 Dynamic Trajectory Planning |
|
|
270 | (2) |
|
14.5 Robust Spectrum Sharing with Terrestrial Networks |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (3) |
|
15 Generalized Low-Rank Optimization for Ultra-dense Fog-RANs |
|
|
277 | (24) |
|
|
|
|
|
277 | (3) |
|
|
277 | (1) |
|
15.1.2 Generalized Low-Rank Models |
|
|
278 | (1) |
|
15.1.3 Low-Rank Optimization Algorithms |
|
|
279 | (1) |
|
|
280 | (1) |
|
15.2 Generalized Low-Rank Models in Ultra-dense Fog-RANs |
|
|
280 | (5) |
|
15.2.1 A Generalized Low-Rank Framework |
|
|
280 | (1) |
|
15.2.2 Low-Rank Optimization Examples in Fog-RANs |
|
|
281 | (4) |
|
15.3 The Power of Nonconvex Paradigms for Ultra-dense Fog-RANs |
|
|
285 | (3) |
|
15.3.1 Low-Rank Optimization via Nonconvex Factorization |
|
|
285 | (1) |
|
15.3.2 The Framework of Riemannian Optimization |
|
|
286 | (2) |
|
15.3.3 Practical Implementation |
|
|
288 | (1) |
|
15.4 Matrix Optimization on Quotient Manifold |
|
|
288 | (7) |
|
15.4.1 Problem Structures for Fixed-Rank Matrices |
|
|
289 | (1) |
|
15.4.2 Matrix Representation for the Quotient Manifolds |
|
|
290 | (3) |
|
15.4.3 Riemannian Optimization Algorithms |
|
|
293 | (1) |
|
15.4.4 Convergence and Computational Complexity |
|
|
294 | (1) |
|
|
295 | (2) |
|
15.6 Summary and Discussion |
|
|
297 | (1) |
|
|
297 | (4) |
|
Part IV Field Trials and Tests |
|
|
301 | (14) |
|
16 Field Trials and Tests on Ultra-dense Networks |
|
|
303 | (12) |
|
|
|
|
|
303 | (4) |
|
16.2 C-RAN-Based UDN Network Trial |
|
|
307 | (6) |
|
16.2.1 Test Results and Analysis |
|
|
307 | (6) |
|
|
313 | (1) |
|
|
314 | (1) |
Index |
|
315 | |