Preface |
|
xiii | |
Acknowledgments |
|
xvii | |
Publisher's Acknowledgments |
|
xix | |
|
1 Bayesian Inference and Markov Chain Monte Carlo |
|
|
1 | (26) |
|
|
1 | (3) |
|
1.1.1 Specification of Bayesian Models |
|
|
2 | (1) |
|
1.1.2 The Jeffreys Priors and Beyond |
|
|
2 | (2) |
|
|
4 | (4) |
|
1.2.1 Credible Intervals and Regions |
|
|
4 | (1) |
|
1.2.2 Hypothesis Testing: Bayes Factors |
|
|
5 | (3) |
|
1.3 Monte Carlo Integration |
|
|
8 | (2) |
|
|
8 | (1) |
|
1.3.2 Monte Carlo Approximation |
|
|
9 | (1) |
|
1.3.3 Monte Carlo via Importance Sampling |
|
|
9 | (1) |
|
1.4 Random Variable Generation |
|
|
10 | (8) |
|
1.4.1 Direct or Transformation Methods |
|
|
11 | (1) |
|
1.4.2 Acceptance-Rejection Methods |
|
|
11 | (3) |
|
1.4.3 The Ratio-of-Uniforms Method and Beyond |
|
|
14 | (4) |
|
1.4.4 Adaptive Rejection Sampling |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.5 Markov Chain Monte Carlo |
|
|
18 | (9) |
|
|
18 | (2) |
|
1.5.2 Convergence Results |
|
|
20 | (3) |
|
1.5.3 Convergence Diagnostics |
|
|
23 | (1) |
|
|
24 | (3) |
|
|
27 | (32) |
|
|
27 | (3) |
|
|
30 | (3) |
|
2.3 Implementation Strategies and Acceleration Methods |
|
|
33 | (12) |
|
2.3.1 Blocking and Collapsing |
|
|
33 | (1) |
|
2.3.2 Hierarchical Centering and Reparameterization |
|
|
34 | (1) |
|
2.3.3 Parameter Expansion for Data Augmentation |
|
|
35 | (8) |
|
2.3.4 Alternating Subspace-Spanning Resampling |
|
|
43 | (2) |
|
|
45 | (14) |
|
2.4.1 The Student-t Model |
|
|
45 | (2) |
|
2.4.2 Robit Regression or Binary Regression with the Student-t Link |
|
|
47 | (3) |
|
2.4.3 Linear Regression with Interval-Censored Responses |
|
|
50 | (4) |
|
|
54 | (2) |
|
Appendix 2A The EM and PX-EM Algorithms |
|
|
56 | (3) |
|
3 The Metropolis-Hastings Algorithm |
|
|
59 | (26) |
|
3.1 The Metropolis-Hastings Algorithm |
|
|
59 | (6) |
|
3.1.1 Independence Sampler |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.1.3 Problems with Metropolis-Hastings Simulations |
|
|
63 | (2) |
|
3.2 Variants of the Metropolis-Hastings Algorithm |
|
|
65 | (2) |
|
3.2.1 The Hit-and-Run Algorithm |
|
|
65 | (1) |
|
3.2.2 The Langevin Algorithm |
|
|
65 | (1) |
|
3.2.3 The Multiple-Try MH Algorithm |
|
|
66 | (1) |
|
3.3 Reversible Jump MCMC Algorithm for Bayesian Model Selection Problems |
|
|
67 | (8) |
|
3.3.1 Reversible Jump MCMC Algorithm |
|
|
67 | (3) |
|
3.3.2 Change-Point Identification |
|
|
70 | (5) |
|
3.4 Metropolis-Within-Gibbs Sampler for ChIP-chip Data Analysis |
|
|
75 | (10) |
|
3.4.1 Metropolis-Within-Gibbs Sampler |
|
|
75 | (1) |
|
3.4.2 Bayesian Analysis for ChIP-chip Data |
|
|
76 | (7) |
|
|
83 | (2) |
|
4 Auxiliary Variable MCMC Methods |
|
|
85 | (38) |
|
|
86 | (2) |
|
|
88 | (2) |
|
|
90 | (1) |
|
4.4 The Swendsen-Wang Algorithm |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (2) |
|
4.7 The Exchange Algorithm |
|
|
97 | (1) |
|
4.8 The Double MH Sampler |
|
|
98 | (5) |
|
4.8.1 Spatial Autologistic Models |
|
|
99 | (4) |
|
4.9 Monte Carlo MH Sampler |
|
|
103 | (10) |
|
4.9.1 Monte Carlo MH Algorithm |
|
|
103 | (4) |
|
|
107 | (3) |
|
4.9.3 Spatial Autologistic Models (Revisited) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (10) |
|
|
114 | (2) |
|
|
116 | (5) |
|
|
121 | (2) |
|
5 Population-Based MCMC Methods |
|
|
123 | (42) |
|
5.1 Adaptive Direction Sampling |
|
|
124 | (1) |
|
5.2 Conjugate Gradient Monte Carlo |
|
|
125 | (1) |
|
5.3 Sample Metropolis-Hastings Algorithm |
|
|
126 | (1) |
|
|
127 | (1) |
|
5.5 Evolutionary Monte Carlo |
|
|
128 | (12) |
|
5.5.1 Evolutionary Monte Carlo in Binary-Coded Space |
|
|
129 | (3) |
|
5.5.2 Evolutionary Monte Carlo in Continuous Space |
|
|
132 | (1) |
|
5.5.3 Implementation Issues |
|
|
133 | (1) |
|
5.5.4 Two Illustrative Examples |
|
|
134 | (5) |
|
|
139 | (1) |
|
5.6 Sequential Parallel Tempering for Simulation of High Dimensional Systems |
|
|
140 | (6) |
|
5.6.1 Build-up Ladder Construction |
|
|
141 | (1) |
|
5.6.2 Sequential Parallel Tempering |
|
|
142 | (1) |
|
5.6.3 An Illustrative Example: the Witch's Hat Distribution |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
146 | (2) |
|
|
148 | (17) |
|
5.8.1 Bayesian Curve Fitting |
|
|
148 | (5) |
|
5.8.2 Protein Folding Simulations: 2D HP Model |
|
|
153 | (3) |
|
5.8.3 Bayesian Neural Networks for Nonlinear Time Series Forecasting |
|
|
156 | (6) |
|
|
162 | (1) |
|
Appendix 5A Protein Sequences for 2D HP Models |
|
|
163 | (2) |
|
|
165 | (34) |
|
|
165 | (8) |
|
|
165 | (2) |
|
6.1.2 Tempering Dynamic Weighting Algorithm |
|
|
167 | (4) |
|
6.1.3 Dynamic Weighting in Optimization |
|
|
171 | (2) |
|
6.2 Dynamically Weighted Importance Sampling |
|
|
173 | (12) |
|
|
173 | (1) |
|
|
174 | (2) |
|
6.2.3 Some IWIWp Transition Rules |
|
|
176 | (3) |
|
|
179 | (1) |
|
6.2.5 Weight Behavior Analysis |
|
|
180 | (3) |
|
6.2.6 A Numerical Example |
|
|
183 | (2) |
|
6.3 Monte Carlo Dynamically Weighted Importance Sampling |
|
|
185 | (10) |
|
6.3.1 Sampling from Distributions with Intractable Normalizing Constants |
|
|
185 | (1) |
|
6.3.2 Monte Carlo Dynamically Weighted Importance Sampling |
|
|
186 | (5) |
|
6.3.3 Bayesian Analysis for Spatial Autologistic Models |
|
|
191 | (4) |
|
6.4 Sequentially Dynamically Weighted Importance Sampling |
|
|
195 | (4) |
|
|
197 | (2) |
|
7 Stochastic Approximation Monte Carlo |
|
|
199 | (106) |
|
7.1 Multicanonical Monte Carlo |
|
|
200 | (2) |
|
7.2 1/k-Ensemble Sampling |
|
|
202 | (2) |
|
7.3 The Wang-Landau Algorithm |
|
|
204 | (3) |
|
7.4 Stochastic Approximation Monte Carlo |
|
|
207 | (11) |
|
7.5 Applications of Stochastic Approximation Monte Carlo |
|
|
218 | (15) |
|
7.5.1 Efficient p-Value Evaluation for Resampling-Based Tests |
|
|
218 | (4) |
|
7.5.2 Bayesian Phylogeny Inference |
|
|
222 | (5) |
|
7.5.3 Bayesian Network Learning |
|
|
227 | (6) |
|
7.6 Variants of Stochastic Approximation Monte Carlo |
|
|
233 | (20) |
|
7.6.1 Smoothing SAMC for Model Selection Problems |
|
|
233 | (6) |
|
7.6.2 Continuous SAMC for Marginal Density Estimation |
|
|
239 | (5) |
|
7.6.3 Annealing SAMC for Global Optimization |
|
|
244 | (9) |
|
7.7 Theory of Stochastic Approximation Monte Carlo |
|
|
253 | (22) |
|
|
253 | (14) |
|
|
267 | (4) |
|
7.7.3 Ergodicity and its IWIW Property |
|
|
271 | (4) |
|
7.8 Trajectory Averaging: Toward the Optimal Convergence Rate |
|
|
275 | (30) |
|
7.8.1 Trajectory Averaging for a SAMCMC Algorithm |
|
|
277 | (2) |
|
7.8.2 Trajectory Averaging for SAMC |
|
|
279 | (2) |
|
7.8.3 Proof of Theorems 7.8.2 and 7.8.3 |
|
|
281 | (15) |
|
|
296 | (2) |
|
Appendix 7A Test Functions for Global Optimization |
|
|
298 | (7) |
|
8 Markov Chain Monte Carlo with Adaptive Proposals |
|
|
305 | (22) |
|
8.1 Stochastic Approximation-Based Adaptive Algorithms |
|
|
306 | (6) |
|
8.1.1 Ergodicity and Weak Law of Large Numbers |
|
|
307 | (2) |
|
8.1.2 Adaptive Metropolis Algorithms |
|
|
309 | (3) |
|
8.2 Adaptive Independent Metropolis-Hastings Algorithms |
|
|
312 | (3) |
|
8.3 Regeneration-Based Adaptive Algorithms |
|
|
315 | (2) |
|
8.3.1 Identification of Regeneration Times |
|
|
315 | (2) |
|
8.3.2 Proposal Adaptation at Regeneration Times |
|
|
317 | (1) |
|
8.4 Population-Based Adaptive Algorithms |
|
|
317 | (10) |
|
8.4.1 ADS, EMC, NKC and More |
|
|
317 | (1) |
|
|
318 | (5) |
|
8.4.3 Application to Sensor Placement Problems |
|
|
323 | (1) |
|
|
324 | (3) |
References |
|
327 | (26) |
Index |
|
353 | |