Muutke küpsiste eelistusi

E-raamat: 3D Bioprinting in Regenerative Engineering: Principles and Applications

  • Formaat - PDF+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures.

Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text:











Presents the principles and applications of bioprinting





Discusses bioinks for 3D printing





Explores applications of extrusion bioprinting, including past, present, and future challenges





Includes discussion on 4D Bioprinting in terms of mechanisms and applications
Editors ix
Contributors xi
1 Principles And Applications Of Bioprinting 1(24)
A. Skardal
1.1 Introduction
1(1)
1.2 Bioprinting-then and now
2(8)
1.2.1 Pioneers
2(2)
1.2.2 Modalities defined
4(6)
1.2.2.1 Inkjet
4(3)
1.2.2.2 Extrusion
7(1)
1.2.2.3 Stereolithography and projection patterning
8(1)
1.2.2.4 Laser-induced forward transfer
9(1)
1.2.3 Wider adoption
10(1)
1.3 Essential components of bioprinting
10(6)
1.3.1 Cells
11(2)
1.3.1.1 Cell lines.
11(1)
1.3.1.2 Primary cells.
12(1)
1.3.1.3 Stem cells and stem cell-derived cells
12(1)
1.3.2 Biomaterials
13(3)
1.4 Future hurdles and potential
16(3)
1.4.1 Bioink limitations
16(2)
1.4.2 Resolution versus speed
18(1)
1.4.3 Regulatory hurdles
19(1)
1.5 Conclusion
19(1)
References
19(6)
2 Bioinks For 3D Printing 25(26)
E. Gargus
P. Lewis
R. Shah
2.1 Introduction
25(1)
2.2 The need for tunable bioinks
26(1)
2.3 Liquid and gel-phase bioinks
27(1)
2.4 Bioink cross-linking
28(1)
2.5 Important considerations for bioprinting
28(5)
2.5.1 Bioink biocompatibility
30(1)
2.5.2 Bioink printability
30(1)
2.5.3 Printer and nozzle properties
31(2)
2.6 Natural bioinks
33(10)
2.6.1 Protein-based bioinks
33(5)
2.6.1.1 Collagen
35(1)
2.6.1.2 Gelatin
36(1)
2.6.1.3 Fibrin/Fibrinogen
37(1)
2.6.2 Polysaccharide-based bioinks
38(2)
2.6.2.1 Alginate
38(1)
2.6.2.2 Hyaluronic acid
39(1)
2.6.2.3 Chitosan and chitin
39(1)
2.6.3 Other natural bioinks
40(13)
2.6.3.1 Matrigel™
40(1)
2.6.3.2 Decellularized extracellular matrix hydrogels
40(3)
2.6.3.3 Scaffold-free bioprinting
43(1)
2.7 Synthetic bioinks
43(1)
2.8 Conclusion
44(1)
References
45(6)
3 Applications Of Extrusion Bioprinting: Past, Present, Future 51(26)
G. Forgacs
F. Marga
K. Jakab
3.1 Introduction
51(2)
3.2 Major components of extrusion-based bioprinting
53(3)
3.2.1 Pre-processing
53(2)
3.2.2 Processing
55(1)
3.2.3 Post-processing
55(1)
3.3 The past: Early applications
56(5)
3.3.1 Rings and sheets
56(2)
3.3.2 Tubular structures: Vascular and nerve grafts
58(3)
3.4 The present
61(8)
3.4.1 Applications for basic research
61(6)
3.4.2 Applications in pharmaceutics
67(1)
3.4.3 Toward therapeutic applications
68(1)
3.5 The near future
69(1)
3.5.1 Toward the elimination of animal trials
69(1)
3.5.2 Mitigating the critical shortage of donor organs
70(1)
3.5.3 Bioprinting in the operating room
70(1)
3.6 The more distant realistic future
70(1)
3.7 Conclusion
71(1)
References
72(5)
4 Laser-Based 3D Bioprinting 77(22)
Benjamin T. Vinson
S.C. Sklare
Yong Huang
Douglas B. Chrisey
4.1 Introduction
77(4)
4.2 Laser printing overview
81(2)
4.3 Laser-based techniques
83(1)
4.3.1 LIFT
83(1)
4.3.2 AFA-LIFT
83(1)
4.3.3 MAPLE-DW
83(1)
4.4 Turning the precise 2D/2.5D spatial resolution of LDW into 3D tissues
84(5)
4.4.1 Layer-by-layer hydrogel stacking
84(1)
4.4.2 Microscale encapsulation
85(2)
4.4.3 Spheroids
87(1)
4.4.4 Free-form constructs
87(2)
4.5 Applications
89(3)
4.5.1 Vasculature
89(1)
4.5.2 Skin
90(1)
4.5.3 In situ printing of bone substitute
90(1)
4.5.4 In vitro research models
91(1)
4.6 Conclusion
92(1)
References
93(6)
5 Inkjet-Based 3D Bioprinting 99(20)
Shibu Chameettachal
Falguni Pati
5.1 Introduction
99(1)
5.2 Working principle
100(5)
5.2.1 Continuous inkjet printing
101(1)
5.2.2 Drop-on-demand inkjet printer
102(2)
5.2.2.1 Thermal inkjet printers
102(1)
5.2.2.2 Piezoelectric inkjet printing.
103(1)
5.2.2.3 Electrostatic inkjet bioprinters
104(1)
5.2.3 Electrohydrodynamic jet bioprinting
104(1)
5.3 Materials in use and biofunctionality
105(2)
5.3.1 Alginate
105(1)
5.3.2 Collagen type I, fibrin and thrombin
106(1)
5.3.3 Methacrylated gelatin
106(1)
5.3.4 Polyethylene glycol
106(1)
5.4 Critical process parameters
107(3)
5.4.1 Resolution
107(1)
5.4.2 Orifice size
108(1)
5.4.3 Delivery matrix
108(2)
5.4.4 Viscosity
110(1)
5.5 Drawbacks of inkjet bioprinting
110(2)
5.6 Challenges and future directions
5.7 Conclusion
112(1)
Acknowledgment
113(1)
References
113(6)
6 Rapid Prototyping Of Soft Bioactuators 119(26)
Caroline Cvetkovic
Eunkyung Ko
Collin Kaufman
Lauren Grant
Martha Gillette
Hyunjoon Kong
Rashid Bashir
6.1 Background: Bioinspiration in tissue engineering and robotic actuators
119(5)
6.2 Rapid prototyping techniques and applications
124(1)
6.3 Nonliving bioactuators
125(6)
6.3.1 Fluidic elastomer actuators
127(1)
6.3.2 Variable-length tendon actuators and smart materials
128(1)
6.3.3 Electroactive polymer actuators
129(1)
6.3.4 3D-printed molds for fabrication of soft bioactuators
130(1)
6.4 Living bioactuators
131(3)
6.4.1 Cardiac muscle
132(1)
6.4.2 Skeletal muscle
132(1)
6.4.3 Control mechanisms for living bioactuators
133(1)
6.5 Applications
134(1)
6.6 Limitations and future directions
135(2)
References
137(8)
7 Bioprinting In Otolaryngology And Airway Reconstruction 145(14)
David A. Zopf
Glenn E. Green
7.1 Scaffold-based engineering for airway reconstruction
145(5)
7.2 Scaffold-based engineering for facial soft tissue reconstruction
150(4)
7.3 Bioprinting for facial soft tissue reconstruction
154(1)
References
155(4)
8 Bioprinting Of Human Skin: Gaps, Opportunities, And Future Directions 159(22)
Tania Baltazar
Carolina Catarino
Pankaj Karande
8.1 Human skin: A complex integument
159(4)
8.1.1 Diversity of cell populations
160(1)
8.1.2 Microvasculature
161(1)
8.1.3 Adnexal structures
161(1)
8.1.4 Unmet needs
162(1)
8.2 Contemporary skin models: Gaps and limitations
163(4)
8.2.1 Engineering grafts for regenerative medicine
163(1)
8.2.2 Developing disease models
164(2)
8.2.3 Efficacy models for drug and formulation screening
166(1)
8.3 3D bioprinting: Advances And Opportunities
167(3)
8.3.1 Incorporating diversity of cell populations
167(1)
8.3.2 Incorporating vasculature
168(1)
8.3.3 Incorporating adnexal structures
168(2)
8.4 Emerging concepts: Optimized bioinks
170(4)
8.4.1 Optimizing bioinks for platforms
171(1)
8.4.2 Optimizing bioinks for scaffolds
171(1)
8.4.3 Incorporation of growth factors in bioinks
172(2)
8.5 Perspectives and future directions
174(1)
References
174(7)
9 Bioprinting Vascular Networks 181(20)
Vivian K. Lee
Guohao Dai
9.1 Introduction
181(1)
9.2 Bioprinting vascular walls
182(7)
9.3 Bioprinting endothelialized hollow channels within thick matrix
189(5)
9.4 Current issues/challenges and future directions
194(3)
References
197(4)
10 Bioprinting of living aortic valve 201(46)
D.Y. Cheung
S. Wu
B. Duan
J.T. Butcher
10.1 Introduction
201(2)
10.2 A multiscale overview of the aortic heart valve
203(3)
10.2.1 The aortic heart valve
203(1)
10.2.2 Valve leaflets
203(2)
10.2.3 Valve root
205(1)
10.2.4 Valve leaflet cells
205(1)
10.2.5 Root wall cells
206(1)
10.3 Engineering considerations for TEHV
206(1)
10.4 Overview of current options for aortic valve replacement
207(3)
10.4.1 Mechanical heart valves
207(2)
10.4.2 Bioprosthetic heart valves
209(1)
10.4.3 Ross procedure
209(1)
10.5 Current engineering strategies for whole valve fabrication
210(18)
10.5.1 Decellularization
210(10)
10.5.2 Polymeric valve molding
220(3)
10.5.3 Electrospun nanofibrous scaffolds
223(5)
10.5.4 In vivolin situ engineering of heart valves
228(1)
10.6 3D printing for heart valves
228(4)
10.6.1 Clinical 3D printing of heart valves
229(1)
10.6.2 Bioprinting TEHV
229(3)
10.7 Conclusion and future remarks
232(1)
References
233(14)
11 3D bioprinting of cardiac muscle tissue 247(22)
Andrew Lee
Adam W. Feinberg
11.1 Introduction
247(2)
11.2 Design criteria for engineering cardiac muscle tissue
249(5)
11.2.1 Lessons from the adult heart
249(2)
11.2.2 Lessons from the embryonic heart
251(3)
11.3 Bioinks designed for cardiac tissue printing
254(2)
11.4 Current progress in 3D bioprinting of cardiac muscle constructs
256(2)
11.5 Toward whole heart engineering
258(5)
11.5.1 Medical imaging to generate patient-specific heart models
258(1)
11.5.2 3D-bioprinting approaches at the organ scale
259(3)
11.5.3 Development of bioreactor systems for organ maintenance and maturation
262(1)
References
263(6)
12 Additive manufacturing in the craniofacial area: Applications in vertical alveolar bone augmentation 269(24)
Cedryck Vaquette
Kelly McGowan
Saso lvanovski
12.1 The alveolar bone, resorption, and current grafting techniques
270(1)
12.1.1 Alveolar process
270(1)
12.1.2 Alveolar resorption
270(1)
12.1.3 Prevention of alveolar resorption
270(1)
12.1.4 Implant therapy in areas of alveolar resorption
271(1)
12.2 Augmenting resorbed alveolar bone
271(4)
12.2.1 Vertical bone augmentation
271(4)
12.2.1.1 Guided bone regeneration
271(1)
12.2.1.2 Bone grafts and substitutes
272(1)
12.2.1.3 Distraction osteogenesis
272(2)
12.2.1.4 Onlay bone graft
274(1)
12.3 Principles of bone tissue engineering
275(4)
12.3.1 Biocompatibility
275(1)
12.3.2 Bioresorbability
276(1)
12.3.3 Mechanical strength
276(1)
12.3.4 Porosity
277(1)
12.3.5 Biofactors
277(2)
12.4 Additive manufacturing for vertical bone augmentation
279(8)
12.5 Conclusion
287(1)
References
287(6)
13 Bioprinting of liver 293(20)
Dong-Woo Cho
Hyungseok Lee
Wonil Han
Yeong-Jin Choi
13.1 Introduction: Liver-a vital organ
293(1)
13.2 Cell sources for liver bioprinting
294(4)
13.2.1 Parenchymal cells
295(2)
13.2.2 Nonparenchymal cells
297(1)
13.3 Biomaterials for liver bioprinting
298(4)
13.3.1 Natural polymers
298(1)
13.3.2 Collagen and its derivatives
299(1)
13.3.3 Gelatin and its derivatives
300(1)
13.3.4 Alginate and its derivatives
300(1)
13.3.5 Matrigel®
301(1)
13.3.6 Decellularized liver extracellular matrix
301(1)
13.3.7 Synthetic polymers
301(1)
13.4 Methods of liver bioprinting
302(2)
13.4.1 Inkjet bioprinting
302(1)
13.4.2 Microextrusion bioprinting
302(2)
13.4.3 Laser-assisted bioprinting
304(1)
13.6 Conclusion and future perspectives
304(1)
Acknowledgment
305(1)
References
305(8)
14 Bioprinting-enabled technologies for cryopreservation 313(24)
Fariba Ghaderinezhad
Reza Amin
Savas Tasoglu
14.1 Introduction
313(4)
14.1.1 Sperm
314(1)
14.1.2 Oocyte
314(1)
14.1.3 Embryos and embryonic cells
314(1)
14.1.4 Stem cells
315(2)
14.2 Vitrification versus slow freezing method
317(3)
14.3 Theoretical analysis
320(2)
14.3.1 Heat transfer
320(2)
14.3.2 Crystallization
322(1)
14.4 Droplet-based bioprinting technologies
322(3)
14.5 Droplet-based vitrification
325(3)
14.5.1 Anti-Leidenfrost vitrification
325(3)
14.5.2 Contactless vitrification
328(1)
14.6 Conclusions and future perspective
328(1)
Acknowledgments
329(1)
References
329(8)
15 4D bioprinting: Mechanism and applications 337(22)
Qingzhen Yang
Yuan Ji
Feng Xu
15.1 Introduction: Evolution from 3D bioprinting to 4D bioprinting
338(1)
15.2 4D bioprinting based on smart materials
339(8)
15.2.1 Deformation due to water absorption
340(2)
15.2.2 Deformation due to thermal stimulation
342(1)
15.2.3 Deformation due to pH value
343(1)
15.2.4 Deformation due to light
344(1)
15.2.5 Deformation due to surface tension
345(1)
15.2.6 Deformation due to cell traction
346(1)
15.2.7 Others
346(1)
15.3 4D bioprinting based on the maturation of engineered tissue constructs
347(2)
15.3.1 Cell coating
347(1)
15.3.2 Cell self-organization
348(1)
15.3.3 Matrix deposition
348(1)
15.3.4 Cell alignment
349(1)
15.4 Applications of 4D bioprinting
349(5)
15.4.1 Applications of 4D bioprinting in tissue engineering
350(2)
15.4.2 Applications of 4D bioprinting in drug delivery
352(2)
15.5 Concluding remarks and future outlook
354(1)
Acknowledgment
355(1)
References
355(4)
16 Current challenges and future perspectives of bioprinting 359(16)
M. Varkey
A. Atala
16.1 Challenges and future directions
363(1)
16.2 Tissue pre-printing stage
363(3)
16.2.1 Bioinks for biofabrication
364(2)
16.3 Bioprinting stage
366(2)
16.4 Post-printing organ or tissue maturation stage
368(1)
16.5 Regulatory requirements on customized work processes
368(2)
16.6 Conclusion
370(1)
Abbreviations
370(1)
References
371(4)
Index 375
Ali Khademhosseini is a Professor at Harvard Medical School and a faculty at the Harvard-MIT Division of Health Sciences and Technology, Brigham and Women's Hospital and as well as an Associate Faculty at the Wyss institute for Biologically Inspired Engineering. He also directs a satellite laboratory, the Advanced Institute for Materials Research at Tohuku University (Japan) He has authored over 400 peer-reviewed journal articles, editorials and review papers. In addition he has authored/edited ~60 book chapters and ~20 patent/disclosure applications.He has been recognized with over 30 major national and international awards. Dr. Camci-Unal is a postdoctoral fellow at Harvard University, with her research being at the interface of biomaterials and bioengineering with a particular emphasis on engineered platforms for cardiovascular amd bone tissue engineering. She has published over 50 peer reviewed journal articles, 34+ conference abstracs, and 4+ patent applications.