|
|
1 | (12) |
|
|
3 | (10) |
|
|
|
10 | (3) |
|
|
13 | (244) |
|
|
15 | (34) |
|
|
|
2.1 Process Basis of Bulk Micromachining Technologies |
|
|
16 | (4) |
|
2.2 Bulk Micromachining Based on Wafer Bonding |
|
|
20 | (14) |
|
|
20 | (7) |
|
2.2.2 Cavity SOI Technology |
|
|
27 | (2) |
|
2.2.3 Silicon on Glass Processes: Dissolved Wafer Process (DWP) |
|
|
29 | (5) |
|
2.3 Single-Wafer Single-Side Processes |
|
|
34 | (15) |
|
2.3.1 Single-Crystal Reactive Etching and Metallization Process (SCREAM) |
|
|
34 | (4) |
|
2.3.2 Sacrificial Bulk Micromachining (SBM) |
|
|
38 | (2) |
|
2.3.3 Silicon on Nothing (SON) |
|
|
40 | (5) |
|
|
45 | (4) |
|
3 Enhanced Bulk Micromachining Based on MIS Process |
|
|
49 | (12) |
|
|
|
3.1 Repeating MIS Cycle for Multilayer 3D structures or Multi-sensor Integration |
|
|
49 | (5) |
|
3.1.1 Pressure Sensors with PS3 Structure |
|
|
49 | (3) |
|
3.1.2 P+G Integrated Sensors |
|
|
52 | (2) |
|
3.2 Pressure Sensor Fabrication - From MIS Updated to TUB |
|
|
54 | (4) |
|
3.3 Extension of MIS Process for Various Advanced MEMS Devices |
|
|
58 | (3) |
|
|
58 | (3) |
|
4 Epitaxial Poly Si Surface Micromachining |
|
|
61 | (8) |
|
|
4.1 Process Condition of Epi-poly Si |
|
|
61 | (1) |
|
4.2 MEMS Devices Using Epi-poly Si |
|
|
61 | (8) |
|
|
67 | (2) |
|
5 Poly-SiGe Surface Micromachining |
|
|
69 | (30) |
|
|
|
|
|
|
69 | (1) |
|
5.1.1 SiGe Applications in IC and MEMS |
|
|
70 | (1) |
|
5.1.2 Desired SiGe Properties for MEMS |
|
|
70 | (1) |
|
|
70 | (3) |
|
|
70 | (1) |
|
5.2.2 Material Properties Comparison |
|
|
71 | (1) |
|
|
72 | (1) |
|
5.3 LPCVD Polycrystalline SiGe |
|
|
73 | (5) |
|
|
73 | (2) |
|
|
75 | (1) |
|
5.3.3 Process Monitoring and Maintenance |
|
|
75 | (1) |
|
5.3.4 In-line Metrology for Film Thickness and Ge Content |
|
|
76 | (1) |
|
5.3.5 Process Space Mapping |
|
|
77 | (1) |
|
|
78 | (10) |
|
5.4.1 CMOS Interface Challenges |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (4) |
|
|
84 | (1) |
|
5.4.2.3 Structural SiGe Module |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
5.4.4 Al-Ge Bonding for Microcaps |
|
|
87 | (1) |
|
5.5 Poly-SiGe Applications |
|
|
88 | (11) |
|
5.5.1 Resonator for Electronic Timing |
|
|
88 | (4) |
|
5.5.2 Nano-electro-mechanical Switches |
|
|
92 | (2) |
|
|
94 | (5) |
|
6 Metal Surface Micromachining |
|
|
99 | (14) |
|
|
6.1 Background of Surface Micromachining |
|
|
99 | (1) |
|
|
100 | (1) |
|
6.3 Static Structure Fixed after the Single Movement |
|
|
101 | (2) |
|
|
103 | (8) |
|
|
103 | (1) |
|
6.4.2 Digital Micromirror Device |
|
|
104 | (7) |
|
|
111 | (2) |
|
|
111 | (2) |
|
7 Heterogeneously Integrated Aluminum Nitride MEMS Resonators and Filters |
|
|
113 | (18) |
|
|
|
|
|
|
7.1 Overview of Integrated Aluminum Nitride MEMS |
|
|
113 | (1) |
|
7.2 Heterogeneous Integration of Aluminum Nitride MEMS Resonators with CMOS Circuits |
|
|
114 | (9) |
|
7.2.1 Aluminum Nitride MEMS Process Flow |
|
|
115 | (1) |
|
1.2.2 Encapsulation of Aluminum Nitride MEMS Resonators and Filters |
|
|
116 | (2) |
|
7.2.3 Redistribution Layers on Top of Encapsulated Aluminum Nitride MEMS |
|
|
118 | (1) |
|
7.2.4 Selected Individual Resonator and Filter Frequency Responses |
|
|
119 | (2) |
|
7.2.5 Flip-chip Bonding of Aluminum Nitride MEMS with CMOS |
|
|
121 | (2) |
|
7.3 Heterogeneously Integrated Self-Healing Filters |
|
|
123 | (8) |
|
7.3.1 Application of Statistical Element Selection (SES) to A1N MEMS Filters with CMOS Circuits |
|
|
123 | (1) |
|
7.3.2 Measurement of 3D Hybrid Integrated Chip Stack |
|
|
124 | (3) |
|
|
127 | (4) |
|
|
131 | (90) |
|
|
|
|
|
8.1 Introduction: CMOS MEMS Architectures and Advantages |
|
|
131 | (8) |
|
8.2 Process Modules for CMOS MEMS |
|
|
139 | (9) |
|
8.2.1 Process Modules for Thin Films |
|
|
140 | (1) |
|
8.2.1.1 Metal Sacrificial |
|
|
140 | (2) |
|
8.2.1.2 Oxide Sacrificial |
|
|
142 | (1) |
|
8.2.1.3 TiN-composite (TiN-C) |
|
|
143 | (2) |
|
8.2.2 Process Modules for the Substrate |
|
|
145 | (1) |
|
8.2.2.1 SF6 and XeF2 (Dry Isotropic) |
|
|
145 | (1) |
|
8.2.2.2 KOH and TMAH (Wet Anisotropic) |
|
|
146 | (1) |
|
8.2.2.3 RIE and DRIE (Front-side RIE, Backside DRIE) |
|
|
146 | (2) |
|
8.3 The 2P4M CMOS Platform (0.35 um) |
|
|
148 | (6) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (2) |
|
|
152 | (2) |
|
8.4 The 1P6M CMOS Platform (0.18 um) |
|
|
154 | (10) |
|
|
154 | (2) |
|
|
156 | (2) |
|
|
158 | (2) |
|
|
160 | (4) |
|
8.5 CMOS MEMS with Add-on Materials |
|
|
164 | (16) |
|
8.5.1 Gas and Humidity Sensors |
|
|
164 | (1) |
|
|
164 | (6) |
|
|
170 | (3) |
|
8.5.2 Biochemical Sensors |
|
|
173 | (2) |
|
8.5.3 Pressure and Acoustic Sensors |
|
|
175 | (3) |
|
8.5.3.1 Microfluidic Structures |
|
|
178 | (2) |
|
8.6 Monolithic Integration of Circuits and Sensors |
|
|
180 | (11) |
|
8.6.1 Multi-sensor Integration |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (2) |
|
8.6.2 Readout Circuit Integration |
|
|
183 | (1) |
|
8.6.2.1 Resistive Sensors |
|
|
183 | (1) |
|
8.6.2.2 Capacitive Sensors |
|
|
184 | (4) |
|
8.6.2.3 Inductive Sensors |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
191 | (14) |
|
8.7.1 Residual Stresses, CTE Mismatch, and Creep of Thin Films |
|
|
192 | (1) |
|
8.7.1.1 Initial Deformation - Residual Stress |
|
|
192 | (3) |
|
8.7.1.2 Thermal Deformation - Thermal Expansion Coefficient Mismatch |
|
|
195 | (2) |
|
8.7.1.3 Long-time Stability - Creep |
|
|
197 | (2) |
|
8.7.2 Quality Factor, Materials Loss, and Temperature Stability |
|
|
199 | (2) |
|
|
201 | (1) |
|
8.7.2.2 Thermoelastic Damping (TED) |
|
|
201 | (1) |
|
8.7.2.3 Material and Interface Loss |
|
|
201 | (2) |
|
8.7.3 Dielectric Charging |
|
|
203 | (1) |
|
8.7.4 Nonlinearity and Phase Noise in Oscillators |
|
|
204 | (1) |
|
|
205 | (16) |
|
|
207 | (14) |
|
|
221 | (22) |
|
|
|
221 | (2) |
|
|
223 | (5) |
|
9.3 Device Transfer (via-last) |
|
|
228 | (3) |
|
9.4 Device Transfer (Via-First) |
|
|
231 | (5) |
|
|
236 | (7) |
|
|
241 | (2) |
|
|
243 | (14) |
|
|
|
243 | (3) |
|
|
243 | (1) |
|
10.1.2 PZT Thin Films Property as an Actuator |
|
|
244 | (2) |
|
10.1.3 PZT Thin Film Composition and Orientation |
|
|
246 | (1) |
|
10.2 PZT Thin Film Deposition |
|
|
246 | (5) |
|
|
246 | (2) |
|
|
248 | (1) |
|
10.2.2.1 Orientation Control |
|
|
248 | (1) |
|
10.2.2.2 Thick Film Deposition |
|
|
249 | (1) |
|
10.2.3 Electrode Materials and Lifetime of PZT Thin Films |
|
|
250 | (1) |
|
10.3 PZT-MEMS Fabrication Process |
|
|
251 | (6) |
|
10.3.1 Cantilever and Microscanner |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
255 | (2) |
|
Part III Bonding, Sealing and Interconnection |
|
|
257 | (224) |
|
|
259 | (20) |
|
|
|
259 | (3) |
|
|
262 | (1) |
|
11.3 Influence of Anodic Bonding to Circuits |
|
|
263 | (2) |
|
11.4 Anodic Bonding with Various Materials, Structures and Conditions |
|
|
265 | (14) |
|
11.4.1 Various Combinations |
|
|
265 | (4) |
|
11.4.2 Anodic Bonding with Intermediate Thin Films |
|
|
269 | (2) |
|
11.4.3 Variation of Anodic Bonding |
|
|
271 | (3) |
|
11.4.4 Glass Reflow Process |
|
|
274 | (2) |
|
|
276 | (3) |
|
|
279 | (10) |
|
|
12.1 Wafer Direct Bonding |
|
|
279 | (1) |
|
12.2 Hydrophilic Wafer Bonding |
|
|
279 | (4) |
|
12.3 Surface Activated Bonding at Room Temperature |
|
|
283 | (6) |
|
|
286 | (3) |
|
|
289 | (20) |
|
|
13.1 Solid Liquid Interdiffusion Bonding (SLID) |
|
|
290 | (8) |
|
|
291 | (3) |
|
|
294 | (3) |
|
|
297 | (1) |
|
|
297 | (1) |
|
13.2 Metal Thermocompression Bonding |
|
|
298 | (3) |
|
13.2.1.1 Interface Formation |
|
|
299 | (1) |
|
13.2.1.2 Grain Reorientation |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (8) |
|
|
302 | (1) |
|
|
302 | (2) |
|
|
304 | (1) |
|
|
304 | (5) |
|
|
309 | (22) |
|
|
|
|
|
|
|
|
|
309 | (1) |
|
14.2 Fundamentals of Reactive Bonding |
|
|
309 | (3) |
|
14.3 Material Systems 3JJ |
|
|
|
|
312 | (1) |
|
14.5 Deposition Concepts of Reactive Material Systems |
|
|
313 | (10) |
|
14.5.1 Physical Vapor Deposition |
|
|
313 | (2) |
|
14.5.1.1 Conclusion Physical Vapor Deposition and Patterning |
|
|
315 | (1) |
|
14.5.2 Electrochemical Deposition of Reactive Material Systems |
|
|
315 | (1) |
|
14.5.2.1 Dual Bath Technology |
|
|
316 | (2) |
|
14.5.2.2 Single Bath Technology |
|
|
318 | (1) |
|
14.5.2.3 Conclusion DBT and SBT |
|
|
319 | (1) |
|
14.5.3 Vertical Reactive Material Systems With ID Periodicity |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
321 | (2) |
|
|
323 | (1) |
|
|
323 | (3) |
|
|
326 | (5) |
|
|
326 | (5) |
|
|
331 | (30) |
|
|
|
|
331 | (1) |
|
15.2 Materials for Polymer Wafer Bonding |
|
|
332 | (9) |
|
15.2.1 Polymer Adhesion Mechanisms |
|
|
332 | (3) |
|
15.2.2 Properties of Polymers for Wafer Bonding |
|
|
335 | (2) |
|
15.2.3 Polymers Used in Wafer Bonding |
|
|
337 | (4) |
|
15.3 Polymer Wafer Bonding Technology |
|
|
341 | (9) |
|
15.3.1 Process Parameters in Polymer Wafer Bonding |
|
|
341 | (7) |
|
15.3.2 Localized Polymer Wafer Bonding |
|
|
348 | (2) |
|
15.4 Precise Wafer-to-Wafer Alignment in Polymer Wafer Bonding |
|
|
350 | (1) |
|
15.5 Practical Examples of Polymer Wafer Bonding Processes |
|
|
351 | (3) |
|
15.6 Summary and Conclusions |
|
|
354 | (7) |
|
|
354 | (7) |
|
16 Soldering by Local Heating |
|
|
361 | (16) |
|
|
|
16.1 Soldering in MEMS Packaging |
|
|
361 | (1) |
|
|
362 | (3) |
|
16.3 Resistive Heating and Soldering |
|
|
365 | (3) |
|
16.4 Inductive Heating and Soldering |
|
|
368 | (2) |
|
16.5 Other Localized Soldering Processes |
|
|
370 | (7) |
|
16.5.1 Self-propagative Reaction Heating |
|
|
370 | (1) |
|
16.5.2 Ultrasonic Frictional Heating |
|
|
371 | (3) |
|
|
374 | (3) |
|
17 Packaging, Sealing, and Interconnection |
|
|
377 | (32) |
|
|
17.1 Wafer Level Packaging |
|
|
377 | (1) |
|
|
378 | (10) |
|
|
378 | (2) |
|
17.2.2 Deposition Sealing (Shell Packaging) |
|
|
380 | (5) |
|
17.2.3 Metal Compression Sealing |
|
|
385 | (3) |
|
|
388 | (21) |
|
17.3.1 Vertical Feedthrough Interconnection |
|
|
388 | (1) |
|
17.3.1.1 Through Glass via (TGV) Interconnection |
|
|
388 | (5) |
|
17.3.1.2 Through Si via (TSiV) Interconnection |
|
|
393 | (2) |
|
17.3.2 Lateral Feedthrough Interconnection |
|
|
395 | (6) |
|
17.3.3 Interconnection by Electroplating |
|
|
401 | (3) |
|
|
404 | (5) |
|
|
409 | (14) |
|
|
18.1 Problems of Vacuum Packaging |
|
|
409 | (1) |
|
18.2 Vacuum Packaging by Anodic Bonding |
|
|
409 | (5) |
|
18.3 Packaging by Anodic Bonding with Controlled Cavity Pressure |
|
|
414 | (2) |
|
18.4 Vacuum Packaging by Metal Bonding |
|
|
416 | (1) |
|
18.5 Vacuum Packaging by Deposition |
|
|
417 | (1) |
|
|
417 | (6) |
|
|
420 | (3) |
|
19 Buried Channels in Monolithic Si |
|
|
423 | (12) |
|
|
19.1 Buried Channel/Cavity in LSI and MEMS |
|
|
423 | (2) |
|
19.2 Monolithic SON Technology and Related Technologies |
|
|
425 | (10) |
|
|
435 | (8) |
|
|
439 | (4) |
|
20 Through-substrate Vias |
|
|
443 | (38) |
|
|
20.1 Configurations of TSVs |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
445 | (1) |
|
20.2 TSV Applications in MEMS |
|
|
445 | (5) |
|
20.2.1 Signal Conduction to the Wafer Backside |
|
|
446 | (1) |
|
20.2.2 CMOS-MEMS 3D Integration |
|
|
446 | (1) |
|
20.2.3 MEMS and CMOS 2.5D Integration |
|
|
447 | (1) |
|
20.2.4 Wafer-level Vacuum Packaging |
|
|
448 | (2) |
|
20.2.5 Other Applications |
|
|
450 | (1) |
|
20.3 Considerations for TSV in MEMS |
|
|
450 | (1) |
|
20.4 Fundamental TSV Fabrication Technologies |
|
|
450 | (10) |
|
|
451 | (1) |
|
20.4.1.1 Deep Reactive Ion Etching |
|
|
451 | (1) |
|
|
452 | (2) |
|
20.4.2 Insulator Formation |
|
|
454 | (1) |
|
20.4.2.1 Silicon Dioxide Insulators |
|
|
454 | (1) |
|
20.4.2.2 Polymer Insulators |
|
|
455 | (1) |
|
|
455 | (1) |
|
20.4.3 Conductor Formation |
|
|
455 | (1) |
|
|
456 | (1) |
|
20.4.3.2 Single Crystalline Silicon |
|
|
456 | (1) |
|
|
457 | (1) |
|
|
457 | (2) |
|
20.4.3.5 Other Conductor Materials |
|
|
459 | (1) |
|
|
460 | (4) |
|
20.5.1 Solid Polysilicon TSVs |
|
|
460 | (3) |
|
20.5.2 Air-gap Polysilicon TSVs |
|
|
463 | (1) |
|
|
464 | (5) |
|
20.6.1 Solid Silicon TSVs |
|
|
465 | (2) |
|
20.6.2 Air-gap Silicon TSVs |
|
|
467 | (2) |
|
|
469 | (12) |
|
|
470 | (4) |
|
|
474 | (6) |
|
20.7.3 Air-gap Metal TSVs |
|
|
480 | (1) |
References |
|
481 | (12) |
Index |
|
493 | |