Muutke küpsiste eelistusi

E-raamat: 3D and Circuit Integration of MEMS

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527823246
  • Formaat - EPUB+DRM
  • Hind: 172,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527823246

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

3D and Circuit Integration of MEMS Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems

MEMS and system integration are important building blocks for the More-Than-Moore paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration.

Youll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks.

Readers will also benefit from the inclusion of:

A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.
Part I Introduction
1(12)
1 Overview
3(10)
Masayoshi Esashi
References
10(3)
Part II System on Chip
13(244)
2 Bulk Micromachining
15(34)
Xinxin Li
Heng Yang
2.1 Process Basis of Bulk Micromachining Technologies
16(4)
2.2 Bulk Micromachining Based on Wafer Bonding
20(14)
2.2.1 SOI MEMS
20(7)
2.2.2 Cavity SOI Technology
27(2)
2.2.3 Silicon on Glass Processes: Dissolved Wafer Process (DWP)
29(5)
2.3 Single-Wafer Single-Side Processes
34(15)
2.3.1 Single-Crystal Reactive Etching and Metallization Process (SCREAM)
34(4)
2.3.2 Sacrificial Bulk Micromachining (SBM)
38(2)
2.3.3 Silicon on Nothing (SON)
40(5)
References
45(4)
3 Enhanced Bulk Micromachining Based on MIS Process
49(12)
Xinxin Li
Heng Yang
3.1 Repeating MIS Cycle for Multilayer 3D structures or Multi-sensor Integration
49(5)
3.1.1 Pressure Sensors with PS3 Structure
49(3)
3.1.2 P+G Integrated Sensors
52(2)
3.2 Pressure Sensor Fabrication - From MIS Updated to TUB
54(4)
3.3 Extension of MIS Process for Various Advanced MEMS Devices
58(3)
References
58(3)
4 Epitaxial Poly Si Surface Micromachining
61(8)
Masayoshi Esashi
4.1 Process Condition of Epi-poly Si
61(1)
4.2 MEMS Devices Using Epi-poly Si
61(8)
References
67(2)
5 Poly-SiGe Surface Micromachining
69(30)
Carrie W. Low
Sergio F. Almeida
Emmanuel P. Quevy
Roger T. Howe
5.1 Introduction
69(1)
5.1.1 SiGe Applications in IC and MEMS
70(1)
5.1.2 Desired SiGe Properties for MEMS
70(1)
5.2 SiGe Deposition
70(3)
5.2.1 Deposition Methods
70(1)
5.2.2 Material Properties Comparison
71(1)
5.2.3 Cost Analysis
72(1)
5.3 LPCVD Polycrystalline SiGe
73(5)
5.3.1 Vertical Furnace
73(2)
5.3.2 Particle Control
75(1)
5.3.3 Process Monitoring and Maintenance
75(1)
5.3.4 In-line Metrology for Film Thickness and Ge Content
76(1)
5.3.5 Process Space Mapping
77(1)
5.4 CMEMS® Process
78(10)
5.4.1 CMOS Interface Challenges
79(1)
5.4.2 CMEMS Process Flow
80(1)
5.4.2.1 Top Metal Module
80(4)
5.4.2.2 Plug Module
84(1)
5.4.2.3 Structural SiGe Module
85(1)
5.4.2.4 Slit Module
85(1)
5.4.2.5 Structure Module
85(1)
5.4.2.6 Spacer Module
85(1)
5.4.2.7 Electrode Module
85(1)
5.4.2.8 Pad Module
86(1)
5.4.3 Release
86(1)
5.4.4 Al-Ge Bonding for Microcaps
87(1)
5.5 Poly-SiGe Applications
88(11)
5.5.1 Resonator for Electronic Timing
88(4)
5.5.2 Nano-electro-mechanical Switches
92(2)
References
94(5)
6 Metal Surface Micromachining
99(14)
Minora Sasaki
6.1 Background of Surface Micromachining
99(1)
6.2 Static Device
100(1)
6.3 Static Structure Fixed after the Single Movement
101(2)
6.4 Dynamic Device
103(8)
6.4.1 MEMS Switch
103(1)
6.4.2 Digital Micromirror Device
104(7)
6.5 Summary
111(2)
References
111(2)
7 Heterogeneously Integrated Aluminum Nitride MEMS Resonators and Filters
113(18)
Enes Calayir
Srinivas Merugu
Jaewung Lee
Navab Singh
Gianluca Piazza
7.1 Overview of Integrated Aluminum Nitride MEMS
113(1)
7.2 Heterogeneous Integration of Aluminum Nitride MEMS Resonators with CMOS Circuits
114(9)
7.2.1 Aluminum Nitride MEMS Process Flow
115(1)
1.2.2 Encapsulation of Aluminum Nitride MEMS Resonators and Filters
116(2)
7.2.3 Redistribution Layers on Top of Encapsulated Aluminum Nitride MEMS
118(1)
7.2.4 Selected Individual Resonator and Filter Frequency Responses
119(2)
7.2.5 Flip-chip Bonding of Aluminum Nitride MEMS with CMOS
121(2)
7.3 Heterogeneously Integrated Self-Healing Filters
123(8)
7.3.1 Application of Statistical Element Selection (SES) to A1N MEMS Filters with CMOS Circuits
123(1)
7.3.2 Measurement of 3D Hybrid Integrated Chip Stack
124(3)
References
127(4)
8 MEMS Using CMOS Wafer
131(90)
Weileun Fang
Sheng-Shian Li
Yi Chiu
Ming-Huang Li
8.1 Introduction: CMOS MEMS Architectures and Advantages
131(8)
8.2 Process Modules for CMOS MEMS
139(9)
8.2.1 Process Modules for Thin Films
140(1)
8.2.1.1 Metal Sacrificial
140(2)
8.2.1.2 Oxide Sacrificial
142(1)
8.2.1.3 TiN-composite (TiN-C)
143(2)
8.2.2 Process Modules for the Substrate
145(1)
8.2.2.1 SF6 and XeF2 (Dry Isotropic)
145(1)
8.2.2.2 KOH and TMAH (Wet Anisotropic)
146(1)
8.2.2.3 RIE and DRIE (Front-side RIE, Backside DRIE)
146(2)
8.3 The 2P4M CMOS Platform (0.35 um)
148(6)
8.3.1 Accelerometer
148(1)
8.3.2 Pressure Sensor
149(1)
8.3.3 Resonators
150(2)
8.3.4 Others
152(2)
8.4 The 1P6M CMOS Platform (0.18 um)
154(10)
8.4.1 Tactile Sensors
154(2)
8.4.2 IR Sensor
156(2)
8.4.3 Resonators
158(2)
8.4.4 Others
160(4)
8.5 CMOS MEMS with Add-on Materials
164(16)
8.5.1 Gas and Humidity Sensors
164(1)
8.5.1.1 Metal Oxide
164(6)
8.5.1.2 Polymer
170(3)
8.5.2 Biochemical Sensors
173(2)
8.5.3 Pressure and Acoustic Sensors
175(3)
8.5.3.1 Microfluidic Structures
178(2)
8.6 Monolithic Integration of Circuits and Sensors
180(11)
8.6.1 Multi-sensor Integration
180(1)
8.6.1.1 Gas Sensors
180(1)
8.6.1.2 Physical Sensors
181(2)
8.6.2 Readout Circuit Integration
183(1)
8.6.2.1 Resistive Sensors
183(1)
8.6.2.2 Capacitive Sensors
184(4)
8.6.2.3 Inductive Sensors
188(2)
8.6.2.4 Resonant Sensors
190(1)
8.7 Issues and Concerns
191(14)
8.7.1 Residual Stresses, CTE Mismatch, and Creep of Thin Films
192(1)
8.7.1.1 Initial Deformation - Residual Stress
192(3)
8.7.1.2 Thermal Deformation - Thermal Expansion Coefficient Mismatch
195(2)
8.7.1.3 Long-time Stability - Creep
197(2)
8.7.2 Quality Factor, Materials Loss, and Temperature Stability
199(2)
8.7.2.1 Anchor Loss
201(1)
8.7.2.2 Thermoelastic Damping (TED)
201(1)
8.7.2.3 Material and Interface Loss
201(2)
8.7.3 Dielectric Charging
203(1)
8.7.4 Nonlinearity and Phase Noise in Oscillators
204(1)
8.8 Concluding Remarks
205(16)
References
207(14)
9 Wafer Transfer
221(22)
Masayoshi Esashi
9.1 Introduction
221(2)
9.2 Film Transfer
223(5)
9.3 Device Transfer (via-last)
228(3)
9.4 Device Transfer (Via-First)
231(5)
9.5 Chip Level Transfer
236(7)
References
241(2)
10 Piezoelectric MEMS
243(14)
T Takeshi Kobayashi
10.1 Introduction
243(3)
10.1.1 Fundamental
243(1)
10.1.2 PZT Thin Films Property as an Actuator
244(2)
10.1.3 PZT Thin Film Composition and Orientation
246(1)
10.2 PZT Thin Film Deposition
246(5)
10.2.1 Sputtering
246(2)
10.2.2 Sol-Gel
248(1)
10.2.2.1 Orientation Control
248(1)
10.2.2.2 Thick Film Deposition
249(1)
10.2.3 Electrode Materials and Lifetime of PZT Thin Films
250(1)
10.3 PZT-MEMS Fabrication Process
251(6)
10.3.1 Cantilever and Microscanner
251(3)
10.3.2 Poling
254(1)
References
255(2)
Part III Bonding, Sealing and Interconnection
257(224)
11 Anodic Bonding
259(20)
Masayoshi Esashi
11.1 Principle
259(3)
11.2 Distortion
262(1)
11.3 Influence of Anodic Bonding to Circuits
263(2)
11.4 Anodic Bonding with Various Materials, Structures and Conditions
265(14)
11.4.1 Various Combinations
265(4)
11.4.2 Anodic Bonding with Intermediate Thin Films
269(2)
11.4.3 Variation of Anodic Bonding
271(3)
11.4.4 Glass Reflow Process
274(2)
References
276(3)
12 Direct Bonding
279(10)
Hideki Takagi
12.1 Wafer Direct Bonding
279(1)
12.2 Hydrophilic Wafer Bonding
279(4)
12.3 Surface Activated Bonding at Room Temperature
283(6)
References
286(3)
13 Metal Bonding
289(20)
Joerg Froemet
13.1 Solid Liquid Interdiffusion Bonding (SLID)
290(8)
13.1.1 Au/In and Cu/In
291(3)
13.1.2 Au/Ga and Cu/Ga
294(3)
13.1.3 Au/Sn and Cu/Sn
297(1)
13.1.4 Void Formation
297(1)
13.2 Metal Thermocompression Bonding
298(3)
13.2.1.1 Interface Formation
299(1)
13.2.1.2 Grain Reorientation
299(1)
13.2.1.3 Grain Growth
300(1)
13.3 Eutectic Bonding
301(8)
13.3.1 Au/Si
302(1)
13.3.2 Al/Ge
302(2)
13.3.3 Au/Sn
304(1)
References
304(5)
14 Reactive Bonding
309(22)
Klaus Vogel
Silvia Hertel
Christian Hofmann
Mathias Weiser
Maik Wiemer
Thomas Otto
Harald Kuhn
14.1 Motivation
309(1)
14.2 Fundamentals of Reactive Bonding
309(3)
14.3 Material Systems 3JJ
14.4 State of the Art
312(1)
14.5 Deposition Concepts of Reactive Material Systems
313(10)
14.5.1 Physical Vapor Deposition
313(2)
14.5.1.1 Conclusion Physical Vapor Deposition and Patterning
315(1)
14.5.2 Electrochemical Deposition of Reactive Material Systems
315(1)
14.5.2.1 Dual Bath Technology
316(2)
14.5.2.2 Single Bath Technology
318(1)
14.5.2.3 Conclusion DBT and SBT
319(1)
14.5.3 Vertical Reactive Material Systems With ID Periodicity
319(1)
14.5.3.1 Dimensioning
320(1)
14.5.3.2 Fabrication
321(2)
14.5.3.3 Conclusion
323(1)
14.6 Bonding With RMS
323(3)
14.7 Conclusion
326(5)
References
326(5)
15 Polymer Bonding
331(30)
Xiaojing Wang
Frank Niklaus
15.1 Introduction
331(1)
15.2 Materials for Polymer Wafer Bonding
332(9)
15.2.1 Polymer Adhesion Mechanisms
332(3)
15.2.2 Properties of Polymers for Wafer Bonding
335(2)
15.2.3 Polymers Used in Wafer Bonding
337(4)
15.3 Polymer Wafer Bonding Technology
341(9)
15.3.1 Process Parameters in Polymer Wafer Bonding
341(7)
15.3.2 Localized Polymer Wafer Bonding
348(2)
15.4 Precise Wafer-to-Wafer Alignment in Polymer Wafer Bonding
350(1)
15.5 Practical Examples of Polymer Wafer Bonding Processes
351(3)
15.6 Summary and Conclusions
354(7)
References
354(7)
16 Soldering by Local Heating
361(16)
Yu-Ting Cheng
Liwei Lin
16.1 Soldering in MEMS Packaging
361(1)
16.2 Laser Soldering
362(3)
16.3 Resistive Heating and Soldering
365(3)
16.4 Inductive Heating and Soldering
368(2)
16.5 Other Localized Soldering Processes
370(7)
16.5.1 Self-propagative Reaction Heating
370(1)
16.5.2 Ultrasonic Frictional Heating
371(3)
References
374(3)
17 Packaging, Sealing, and Interconnection
377(32)
Masayoshi Esashi
17.1 Wafer Level Packaging
377(1)
17.2 Sealing
378(10)
17.2.1 Reaction Sealing
378(2)
17.2.2 Deposition Sealing (Shell Packaging)
380(5)
17.2.3 Metal Compression Sealing
385(3)
17.3 Interconnection
388(21)
17.3.1 Vertical Feedthrough Interconnection
388(1)
17.3.1.1 Through Glass via (TGV) Interconnection
388(5)
17.3.1.2 Through Si via (TSiV) Interconnection
393(2)
17.3.2 Lateral Feedthrough Interconnection
395(6)
17.3.3 Interconnection by Electroplating
401(3)
References
404(5)
18 Vacuum Packaging
409(14)
Masayoshi Esashi
18.1 Problems of Vacuum Packaging
409(1)
18.2 Vacuum Packaging by Anodic Bonding
409(5)
18.3 Packaging by Anodic Bonding with Controlled Cavity Pressure
414(2)
18.4 Vacuum Packaging by Metal Bonding
416(1)
18.5 Vacuum Packaging by Deposition
417(1)
18.6 Hermeticity Testing
417(6)
References
420(3)
19 Buried Channels in Monolithic Si
423(12)
Kazusuke Maenaka
19.1 Buried Channel/Cavity in LSI and MEMS
423(2)
19.2 Monolithic SON Technology and Related Technologies
425(10)
193 Applications of SON
435(8)
References
439(4)
20 Through-substrate Vias
443(38)
Zhyao Wang
20.1 Configurations of TSVs
444(1)
20.1.1 Solid TSVs
444(1)
20.1.2 Hollow TSVs
445(1)
20.1.3 Air-gap TSVs
445(1)
20.2 TSV Applications in MEMS
445(5)
20.2.1 Signal Conduction to the Wafer Backside
446(1)
20.2.2 CMOS-MEMS 3D Integration
446(1)
20.2.3 MEMS and CMOS 2.5D Integration
447(1)
20.2.4 Wafer-level Vacuum Packaging
448(2)
20.2.5 Other Applications
450(1)
20.3 Considerations for TSV in MEMS
450(1)
20.4 Fundamental TSV Fabrication Technologies
450(10)
20.4.1 Deep Hole Etching
451(1)
20.4.1.1 Deep Reactive Ion Etching
451(1)
20.4.1.2 Laser Ablation
452(2)
20.4.2 Insulator Formation
454(1)
20.4.2.1 Silicon Dioxide Insulators
454(1)
20.4.2.2 Polymer Insulators
455(1)
20.4.2.3 Air-gaps
455(1)
20.4.3 Conductor Formation
455(1)
20.4.3.1 Polysilicon
456(1)
20.4.3.2 Single Crystalline Silicon
456(1)
20.4.3.3 Tungsten
457(1)
20.4.3.4 Copper
457(2)
20.4.3.5 Other Conductor Materials
459(1)
20.5 Polysilicon TSVs
460(4)
20.5.1 Solid Polysilicon TSVs
460(3)
20.5.2 Air-gap Polysilicon TSVs
463(1)
20.6 Silicon TSVs
464(5)
20.6.1 Solid Silicon TSVs
465(2)
20.6.2 Air-gap Silicon TSVs
467(2)
20.7 Metal TSVs
469(12)
20.7.1 Solid Metal TSVs
470(4)
20.7.2 Hollow Metal TSVs
474(6)
20.7.3 Air-gap Metal TSVs
480(1)
References 481(12)
Index 493
Masayoshi Esashi is senior research fellow in the Micro System Integration Center at Tohoku University and Professor emeritus. He obtained his doctorate from Tohoku University and his research focuses on MEMS, integrated sensors, and MEMS packaging. He has published over 500 scientific papers and was the recipient of the IEEE Jun-ichi Nishizawa Medal in 2016.