Part I Fundamentals |
|
|
|
3 | (98) |
|
|
6 | (37) |
|
1.1.1 The Determinant of a Matrix |
|
|
10 | (6) |
|
1.1.2 Other Basic Functions of a Matrix |
|
|
16 | (1) |
|
1.1.3 Basic Matrix Operations |
|
|
17 | (14) |
|
|
31 | (7) |
|
1.1.5 Square Block Matrices |
|
|
38 | (5) |
|
|
43 | (34) |
|
|
44 | (5) |
|
|
49 | (7) |
|
1.2.3 Range Space and Null Space |
|
|
56 | (5) |
|
1.2.4 Eigenvalues and Eigenvectors |
|
|
61 | (16) |
|
|
77 | (24) |
|
1.3.1 The Dot (Scalar) Product |
|
|
80 | (3) |
|
1.3.2 The Cross (Vector) Product |
|
|
83 | (5) |
|
|
88 | (3) |
|
1.3.4 Vector Differentiation |
|
|
91 | (10) |
|
|
101 | (46) |
|
2.1 Newton's Mechanics of a Particle |
|
|
101 | (11) |
|
2.1.1 The Work and Energy |
|
|
102 | (5) |
|
|
107 | (3) |
|
|
110 | (2) |
|
2.2 Lagrange Mechanics for Multi-particle Systems |
|
|
112 | (35) |
|
2.2.1 D'Alembert-Lagrange's Equation |
|
|
116 | (13) |
|
2.2.2 The Euler-Lagrange's Equation |
|
|
129 | (7) |
|
2.2.3 Properties of Lagrangian Formulation |
|
|
136 | (7) |
|
|
143 | (4) |
Part II Free Motion of Single Rigid Body |
|
|
|
147 | (38) |
|
|
147 | (2) |
|
|
149 | (16) |
|
3.2.1 Attitude's Degrees of Freedom |
|
|
153 | (1) |
|
|
154 | (3) |
|
|
157 | (3) |
|
3.2.4 The Euler Theorem of Rotations |
|
|
160 | (5) |
|
3.3 The Rigid Motion Kinematics |
|
|
165 | (20) |
|
3.3.1 The Angular Velocity |
|
|
166 | (13) |
|
3.3.2 The Coriolis Effect |
|
|
179 | (1) |
|
3.3.3 The Linear Velocity and Acceleration |
|
|
180 | (2) |
|
3.3.4 Kinematic Equations |
|
|
182 | (3) |
|
4 Attitude Representations |
|
|
185 | (46) |
|
|
186 | (6) |
|
4.1.1 Computing the Axis/Angle Parameters from a Rotation Matrix |
|
|
188 | (1) |
|
4.1.2 The Angular Velocity for the Axis/Angle Representation |
|
|
189 | (1) |
|
4.1.3 Attitude Inverse Kinematics for the Axis/Angle Representation |
|
|
190 | (2) |
|
4.2 Roll-Pitch-Yaw Representation |
|
|
192 | (6) |
|
4.2.1 Computing the Roll, Pitch and Yaw Angles from a Rotation Matrix |
|
|
193 | (2) |
|
4.2.2 Angular Velocity and the Roll-Pitch-Yaw Representation |
|
|
195 | (2) |
|
4.2.3 Attitude Inverse Kinematics for the Roll-Pitch-Yaw Representation |
|
|
197 | (1) |
|
|
198 | (4) |
|
4.3.1 Computing the zyz Euler Angles from a Rotation Matrix |
|
|
199 | (1) |
|
4.3.2 Angular Velocity and the zyz Representation |
|
|
199 | (2) |
|
4.3.3 Attitude Inverse Kinematics for the Euler Angles zyz Representation |
|
|
201 | (1) |
|
|
202 | (17) |
|
4.4.1 Equivalence with the Pair of Rotation |
|
|
204 | (4) |
|
4.4.2 Computing Quaternions from a Rotation Matrix |
|
|
208 | (2) |
|
4.4.3 Composed Rotation with Quaternions |
|
|
210 | (2) |
|
4.4.4 Angular Velocity with Quaternions |
|
|
212 | (3) |
|
4.4.5 Attitude Inverse Kinematics for the Quaternion Representation |
|
|
215 | (4) |
|
|
219 | (11) |
|
4.5.1 Computing Gibb's Vector from a Rotation Matrix |
|
|
220 | (1) |
|
4.5.2 Angular Velocity and Rodrigues Parameters |
|
|
221 | (1) |
|
4.5.3 Attitude Inverse Kinematics for Gibb's Representation |
|
|
222 | (8) |
|
|
230 | (1) |
|
5 Dynamics of a Rigid Body |
|
|
231 | (42) |
|
|
234 | (5) |
|
5.1.1 Kinematics at the Center of Mass |
|
|
238 | (1) |
|
|
239 | (8) |
|
|
241 | (5) |
|
5.2.2 Different Coordinates Expressions for the Kinetic Energy |
|
|
246 | (1) |
|
|
247 | (3) |
|
5.3.1 Linear Momentum Expression |
|
|
247 | (1) |
|
5.3.2 Angular Momentum Expression |
|
|
248 | (2) |
|
|
250 | (8) |
|
5.4.1 Euler's First Law of Motion |
|
|
251 | (1) |
|
5.4.2 Euler's Second Law of Motion |
|
|
252 | (3) |
|
5.4.3 The Newton-Euler Formulation |
|
|
255 | (3) |
|
|
258 | (2) |
|
|
260 | (3) |
|
|
261 | (2) |
|
5.7 Kirchhoff (Energy-Based) Formulation |
|
|
263 | (10) |
|
5.7.1 Kirchhoff-Euler Equivalence |
|
|
264 | (2) |
|
5.7.2 The Potential Energy |
|
|
266 | (7) |
|
6 Spacial Vectors Approach |
|
|
273 | (34) |
|
|
273 | (3) |
|
6.1.1 The Twist: the Velocity Spacial Vector |
|
|
273 | (1) |
|
6.1.2 The Wrench: the Force Spacial Vector |
|
|
274 | (1) |
|
|
275 | (1) |
|
6.1.4 The Motion and Force Spaces |
|
|
276 | (1) |
|
6.2 Spacial Vectors Transformations |
|
|
276 | (7) |
|
|
276 | (2) |
|
6.2.2 Extended Translations |
|
|
278 | (3) |
|
6.2.3 The Spacial Vector Product |
|
|
281 | (2) |
|
6.3 Spacial Vector's Kinematics |
|
|
283 | (5) |
|
6.3.1 The Plucker Transformation |
|
|
283 | (3) |
|
6.3.2 The Pose Kinematics |
|
|
286 | (2) |
|
6.4 Spacial Vector's Dynamics |
|
|
288 | (19) |
|
|
288 | (1) |
|
|
288 | (2) |
|
6.4.3 The Momentum's Spacial Vector |
|
|
290 | (2) |
|
6.4.4 Spacial Vector's Rigid Dynamic Motion |
|
|
292 | (10) |
|
6.4.5 Wrench of Exogenous Influences |
|
|
302 | (5) |
|
|
307 | (24) |
|
7.1 Direct Lagrangian Expression |
|
|
308 | (7) |
|
7.1.1 The Kinetic Energy and Inertia Matrix |
|
|
308 | (2) |
|
7.1.2 The Coriolis Matrix |
|
|
310 | (2) |
|
|
312 | (2) |
|
7.1.4 The Generalized Forces |
|
|
314 | (1) |
|
7.2 Indirect Lagrangian Formulation |
|
|
315 | (11) |
|
7.2.1 The quasi-Lagrangian Coordinates |
|
|
315 | (1) |
|
7.2.2 Indirect Lagrangian Equivalence |
|
|
316 | (2) |
|
7.2.3 Properties of Quasi-Lagrangian Formulation |
|
|
318 | (8) |
|
|
326 | (5) |
Part III Constraint Motion of a Single Rigid Body |
|
|
8 Model Reduction Under Motion Constraint |
|
|
331 | (40) |
|
|
332 | (2) |
|
8.2 Model Reduction, the Dynamical Approach |
|
|
334 | (17) |
|
8.2.1 Example 1: The Omnidirectional Mobile Robot |
|
|
335 | (11) |
|
8.2.2 Example 2: The Differential Mobile Robot |
|
|
346 | (5) |
|
8.3 Twist Coordinates Separation: The Kinematical Approach for the Dynamic Model Reduction |
|
|
351 | (18) |
|
8.3.1 Wrench Coordinates Separation |
|
|
354 | (1) |
|
8.3.2 Kinematical Reduction of the Dynamic Model |
|
|
355 | (4) |
|
8.3.3 Example 3: The Omnidirectional Mobile Robot, Kinematic Approach |
|
|
359 | (5) |
|
8.3.4 Example 4: The Differential Mobile Robot, Kinematic Approach |
|
|
364 | (5) |
|
|
369 | (2) |
Appendix A: The Cross Product Operator |
|
371 | (14) |
Appendix B: Fundamentals of Quaternion Theory |
|
385 | (16) |
Appendix C: Extended Operators |
|
401 | (10) |
Appendix D: Examples for the Center of Mass and Inertia |
|
Tensors of Basic Shapes |
|
411 | |