Muutke küpsiste eelistusi

E-raamat: 3D TCAD Simulation for CMOS Nanoeletronic Devices

  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Jun-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811030666
  • Formaat - PDF+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Jun-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811030666

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal–oxide–semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal–oxide–semiconductor field-effect transistor) nanoelectronic devices.

The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. 

The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.

1 Introduction of Synopsys Sentaurus TCAD Simulation
1(18)
1.1 Introduction
1(1)
1.2 Introduction of Moore's Law and FinFET
2(3)
1.3 Sentaurus Window Environment and Workbench for TCAD Task Management
5(3)
1.4 Synopsys Sentaurus TCAD Software and Working Environment
8(6)
1.5 Simulation Project View on Sentaurus Workbench (SWB)
14(1)
1.6 Sentaurus Visual
14(2)
1.7 Calibration and Services
16(3)
References
17(2)
2 2D MOSFET Simulation
19(72)
2.1 Complementary MOS (CMOS) Technology
19(4)
2.2 [ Example 2.1] 2D n-Type MOSFET with Id--Vg Characteristics Simulation
23(28)
2.3 [ Example 2.2] 2D n-Type MOSFET with Id--Vd Characteristics Simulation
51(9)
2.4 [ Example 2.3] 2D p-Type MOSFET with Id--Vg Characteristics Simulation
60(9)
2.5 [ Example 2.4] 2D p-Type MOSFET with Id--Vg Characteristics Simulation
69(10)
2.6 [ Example 2.5] 2D n-Type MOSFET with LDD (Lightly Doped Drain) Simulation
79(11)
2.7 Summary
90(1)
References
90(1)
3 3D FinFET with Lg = 15 nm and Lg = 10 nm Simulation
91(94)
3.1 Introduction of FinFET
91(4)
3.2 Design Considerations of Threshold Voltage (Vth), Leakage Current (Ioff), and Power Consumption (Power)
95(3)
3.3 Design Considerations of High-k Dielectric Materials and Metal Gate
98(3)
3.4 Design Consideration of Device Gate and TCAD Design Guideline
101(3)
3.5 FinFET 3D Simulation
104(81)
3.5.1 Establishment of FinFET Structure
104(1)
3.5.2 Physical Property Analysis
105(78)
References
183(2)
4 Inverter and SRAM of FinFET with Lg = 15 nm Simulation
185(26)
4.1 Voltage Transfer Curve of Inverter
185(2)
4.2 Speed of CMOS Inverter---Importance of Ion
187(1)
4.3 CMOS Id--Vg Matching Diagram for High-Performance Transistors
188(1)
4.4 [ Example 4.1] Inverter of 3D FinFET with Lg = 15 nm
189(6)
4.5 TCAD Simulation of Static Random-Access Memory (SRAM)
195(1)
4.6 SRAM Operation
196(4)
4.7 [ Example 4.2] Simulation of SRAM of 3D FinFET with Lg = 15 nm
200(11)
References
210(1)
5 Gate-All-Around (GAA) NWFET with L8 = 10 nm Simulation
211(26)
5.1 Introduction of Gate-All-Around Nanowire FET (GAA NWFET)
211(3)
5.2 [ Example 5.1] 3D IM n-Type GAA NWFET
214(8)
5.3 [ Example 5.2] 3D IM p-Type GAA NWFET
222(5)
5.4 [ Example 5.3] 3D Cylindrical IM n-Type GAA NWFET
227(10)
References
236(1)
6 Junctionless FET with Lg = 10 nm Simulation
237(20)
6.1 Foreword
237(1)
6.2 Short-Channel Effect (SCE) of CMOS Device
238(1)
6.3 JL---FET Operating Mechanism
239(3)
6.4 [ Example 6.1] n-Type JL---FET with Lg = 10 nm
242(3)
6.5 [ Example 6.2] p-Type JL---FET with Lg = 10 nm
245(12)
References
255(2)
7 Steep Slope Tunnel FET Simulation
257(22)
7.1 Problems Facing Conventional MOSFET
257(1)
7.2 Operating Mechanism of Tunnel FET (TFET)
258(3)
7.3 Example 7.1 (Design and Simulation of 3D n-Type TFET)
261(7)
7.4 Example 7.2 (3D n-Type TFET of Different Drain Doping Concentrations)
268(4)
7.5 Example 7.3 (3D n-Type TFET with Asymmetrical Gate)
272(6)
7.5.1 Descriptions of Motivation and Principle
272(6)
7.6 Summary of This
Chapter
278(1)
References
278(1)
8 Extremely Scaled Si and Ge to Lg = 3-nm FinFETs and Lg = 1-nm Ultra-Thin Body Junctionless FET Simulation
279(26)
8.1 Foreword
279(2)
8.1.1 Challenges of Sub-10-nm Technology Node
280(1)
8.1.2 Material Selection for Sub-10-nm Technology Node
280(1)
8.2 Design Guideline of Sub-20-nm to 9-nm Gate Length Si FinFET of Wine-Bottle Channel
281(2)
8.2.1 Device Structure and Sub-20-nm FinFET Experimental Data
281(1)
8.2.2 Simulation Results and Discussion
281(2)
8.3 Study of Silicon Lg = 3-nm Bulk IM, AC, and JL FinFET
283(8)
8.4 Study of Germanium Lg = 3-nm Bulk FinFET
291(6)
8.5 Study of Silicon and Germanium UTB-JL---FET with Ultra-Short Gate Length = 1 and 3 nm
297(8)
References
302(3)
Appendix: Synopsys Sentaurus TCAD 2014 Version Software Installation and Environmental Settings 305
Dr. Yung-Chun Wu received his B.S. degree in Physics from National Central University in 1996, his M.S. degree in Physics from National Taiwan University in 1998, and his Ph.D. from National Chiao Tung University, Taiwan, in 2005. From 1998 to 2002, he was an assistant researcher at National Nano Device Laboratories, Hsinchu, Taiwan, where he was primarily engaged in research on single electron transistor and electron beam lithography technology. In 2006, he joined the Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan, where he is currently working as an associate professor. He teaches 3D CMOS semiconductor nanoelectronic devices by TCAD simulation course for seven years. His research interests include nanoelectronic devices and 3D TCAD simulation, flash memory devices, and solar cells. He has published 56 international SCI papers on nanoelectronic devices.



Yi-Ruei Jhan received the B.S. degree in Physics from National Dong Hwa University in 2010, M. S. degree in Engineering and System Science from National Tsing Hua University in 2012, and Ph.D. degree in Engineering and System Science from National Tsing Hua University in 2015. In 2016, he joined the Research and Development department of Taiwan Semiconductor Manufacturing Company (TSMC) after his graduation. His research interests include Nanoelectronic MOSFET devices, TCAD simulation and Nonvolatile memory devices. He is author of book: 3D TCAD Simulation for CMOS Nanoeletronic Devices.