Muutke küpsiste eelistusi

E-raamat: 3D Visual Communications

(National Taiwan University of Science and Technology, Taiwan), (Rochester Institute of Technology, New York, USA), (TCL Research America, California, USA), (Dolby Labs, California, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Nov-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118358030
  • Formaat - PDF+DRM
  • Hind: 116,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Nov-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118358030

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides coverage of the major theories and technologies involved in the lifecycle of 3D video content delivery

Presenting the technologies used in end-to-end 3D video communication systems, this reference covers 3D graphics and video coding, content creation and display, and communications and networking. It covers the full range of key areas from the fundamentals of 3D visual representation to the latest 3D video coding techniques, relevant communication infrastructure and networks to the 3D quality of experience.

The book is structured to logically lead readers through the topic, starting with generic and fundamental information, continuing with a detailed section of different visualisation techniques before concluding with an extensive view of 3D mobile communication systems and trends. The authors give most focus to four important areas: 3D video coding and communications; 3D graphics/gaming and mobile communications; end-to-end 3D ecosystem (including 3D display, 3D player, networking facility and 3D quality issues), and future communications and networks advances for emerging 3D experience.

  • Presents the theory and key concepts behind the latest 3D visual coding framework, standards, and corresponding quality assessment
  • Provides fundamental material which forms the basis for future research on enhancing the performance of 3D visual communications over current and future wireless networks
  • Covers important topics including: 3D video coding and communications; 3D graphics/gaming and mobile communications; end-to-end 3D ecosystem; and future communications and networks advances for emerging 3D experience

Essential reading for engineers involved in the research, design and development of 3D visual coding and 3D visual transmission systems and technologies, as well as academic and industrial researchers.

Preface ix
About the Authors xiii
1 Introduction
1(16)
1.1 Why 3D Communications?
1(2)
1.2 End-to-End 3D Visual Ecosystem
3(7)
1.2.1 3D Modeling and Representation
5(1)
1.2.2 3D Content Creation
6(1)
1.2.3 3D Video Compression
7(1)
1.2.4 3D Content Delivery
8(1)
1.2.5 3D Display
9(1)
1.2.6 3D QoE
9(1)
1.3 3D Visual Communications
10(1)
1.4 Challenges and Opportunities
11(6)
References
15(2)
2 3D Graphics and Rendering
17(46)
2.1 3DTV Content Processing Procedure
19(3)
2.2 3D Scene Representation with Explicit Geometry -- Geometry Based Representation
22(21)
2.2.1 Surface Based Representation
23(14)
2.2.2 Point Based Representation
37(1)
2.2.3 Point Based Construction
38(1)
2.2.4 Point Based Compression and Encoding for Transmission
38(1)
2.2.5 Point Based Rendering: Splatting
39(1)
2.2.6 Volumetric Representation
40(1)
2.2.7 Volumetric Construction
40(1)
2.2.8 Volumetric Compression and Encoding for Transmission
41(1)
2.2.9 Volumetric Rendering
42(1)
2.3 3D Scene Representation without Geometry -- Image-Based Representation
43(8)
2.3.1 Plenoptic Function
43(3)
2.3.2 Single Texture Representation
46(2)
2.3.3 Multiple Texture Representation
48(3)
2.3.4 Image Based Animation
51(1)
2.4 3D Scene Representation with Implicit Geometry -- Depth-Image-Based Representation
51(12)
2.4.1 History of Depth-Image-Based Representation
52(1)
2.4.2 Fundamental Concept Depth-Image-Based Representation
53(3)
2.4.3 Depth Construction
56(1)
2.4.4 Depth-Image-Based Animation
57(1)
References
57(6)
3 3D Display Systems
63(22)
3.1 Depth Cues and Applications to 3D Display
63(2)
3.1.1 Monocular Depth Cues
63(1)
3.1.2 Binocular Depth Cues
64(1)
3.2 Stereoscopic Display
65(6)
3.2.1 Wavelength Division (Color) Multiplexing
65(4)
3.2.2 Polarization Multiplexing
69(1)
3.2.3 Time Multiplexing
69(2)
3.3 Autostereoscopic Display
71(7)
3.3.1 Occlusion-Based Approach
71(4)
3.3.2 Refraction-Based Approach
75(3)
3.4 Multi-View System
78(5)
3.4.1 Head Tracking Enabled Multi-View Display
79(1)
3.4.2 Automultiscopic
79(4)
3.5 Recent Advances in Hologram System Study
83(2)
References
84(1)
4 3D Content Creation
85(44)
4.1 3D Scene Modeling and Creation
85(2)
4.1.1 Geometry-Based Modeling
86(1)
4.1.2 Image-Based Modeling
86(1)
4.1.3 Hybrid Approaches
87(1)
4.2 3D Content Capturing
87(14)
4.2.1 Stereo Camera
87(1)
4.2.2 Depth Camera
88(1)
4.2.3 Multi-View Camera
88(1)
4.2.4 3D Capturing with Monoscopic Camera
89(12)
4.3 2D-to-3D Video Conversion
101(24)
4.3.1 Automatic 2D-to-3D Conversion
103(8)
4.3.2 Interactive 2D-to-3D Conversion
111(1)
4.3.3 Showcase of 3D Conversion System Design
112(13)
4.4 3D Multi-View Generation
125(4)
References
126(3)
5 3D Video Coding and Standards
129(42)
5.1 Fundamentals of Video Coding
129(13)
5.2 Two-View Stereo Video Coding
142(2)
5.2.1 Individual View Coding
142(1)
5.2.2 Inter-View Prediction Stereo Video Coding
143(1)
5.3 Frame-Compatible Stereo Coding
144(4)
5.3.1 Half-Resolution Frame-Compatible Stereo Coding
144(2)
5.3.2 Full-Resolution Frame-Compatible Layer Approach
146(2)
5.4 Video Plus Depth Coding
148(8)
5.5 Multiple View Coding
156(4)
5.6 Multi-View Video Plus Depth (MVD) Video
160(3)
5.7 Layered Depth Video (LDV)
163(2)
5.8 MPEG-4 BIFS and AFX
165(1)
5.9 Free-View Point Video
166(5)
References
167(4)
6 Communication Networks
171(34)
6.1 IP Networks
171(3)
6.1.1 Packet Networks
171(1)
6.1.2 Layered Network Protocols Architecture
172(2)
6.2 Wireless Communications
174(19)
6.2.1 Modulation
175(2)
6.2.2 The Wireless Channel
177(14)
6.2.3 Adaptive Modulation and Coding
191(2)
6.3 Wireless Networking
193(1)
6.4 4G Standards and Systems
193(12)
6.4.1 Evolved Universal Terrestrial Radio Access Network (E-UTRAN)
195(5)
6.4.2 Evolved Packet Core (EPC)
200(1)
6.4.3 Long Term Evolution-Advance (LTE-A)
201(1)
6.4.4 IEEE 802.16 -- WiMAX
202(1)
References
203(2)
7 Quality of Experience
205(54)
7.1 3D Artifacts
205(15)
7.1.1 Fundamentals of 3D Human Visual System
205(1)
7.1.2 Coordinate Transform for Camera and Display System
206(5)
7.1.3 Keystone Distortion
211(1)
7.1.4 Depth-Plane Curvature
212(1)
7.1.5 Shear Distortion
212(1)
7.1.6 Puppet-Theater Effect
213(2)
7.1.7 Cardboard Effect
215(1)
7.1.8 Asymmetries in Stereo Camera Rig
216(1)
7.1.9 Crosstalk
217(1)
7.1.10 Picket-Fence Effect and Lattice Artifacts
217(1)
7.1.11 Hybrid DCT Lossy Compression Artifact
218(1)
7.1.12 Depth Map Bleeding and Depth Ringing
219(1)
7.1.13 Artifacts Introduced by Unreliable Communication Networks
219(1)
7.1.14 Artifacts from New View Synthesis
219(1)
7.1.15 Summary of 3D Artifacts
220(1)
7.2 QoE Measurement
220(27)
7.2.1 Subjective Evaluations
222(4)
7.2.2 2D Image and Video QoE Measurement
226(9)
7.2.3 3D Video HVS Based QoE Measurement
235(11)
7.2.4 Postscript on Quality of Assessment
246(1)
7.3 QoE Oriented System Design
247(12)
7.3.1 Focus Cues and Perceptual Distortions
247(2)
7.3.2 Visual Fatigue
249(1)
References
250(9)
8 3D Video over Networks
259(30)
8.1 Transmission-Induced Error
259(8)
8.2 Error Resilience
267(3)
8.3 Error Concealment
270(5)
8.4 Unequal Error Protection
275(4)
8.5 Multiple Description Coding
279(3)
8.6 Cross-Layer Design
282(7)
References
286(3)
9 3D Applications
289(24)
9.1 Glass-Less Two-View Systems
289(2)
9.1.1 Spatially Multiplexed Systems
290(1)
9.1.2 Temporally Multiplexed Systems
290(1)
9.2 3D Capture and Display Systems
291(3)
9.3 Two-View Gaming Systems
294(4)
9.4 3D Mobile
298(4)
9.4.1 HTC EVO 3D
298(1)
9.4.2 Mobile 3D Perception
299(3)
9.5 Augmented Reality
302(11)
9.5.1 Medical Visualization
304(2)
9.5.2 Mobile Phone Applications
306(3)
References
309(4)
10 Advanced 3D Video Streaming Applications
313(22)
10.1 Rate Control in Adaptive Streaming
313(8)
10.1.1 Fundamentals of Rate Control
313(5)
10.1.2 Two-View Stereo Video Streaming
318(1)
10.1.3 MVC Streaming
318(1)
10.1.4 MVD Streaming
319(2)
10.2 Multi-View Video View Switching
321(4)
10.3 Peer-to-Peer 3D Video Streaming
325(3)
10.4 3D Video Broadcasting
328(1)
10.5 3D Video over 4G Networks
329(6)
References
331(4)
Index 335
Guan-Ming Su, Dolby Labs, USA Dr. Guan-Ming Su received the PhD degree in Electrical Engineering from the University of Maryland, College Park, in 2006. He is currently with Dolby Labs, Santa Clara. Prior to this he was with the R&D Department, Qualcomm, Inc., San Diego; ESS Technology, Fremont; and Marvell Semiconductor, Inc., Santa Clara. Dr Su is an associate editor of Journal of Communications and director of review board and R-Letter in IEEE Multimedia Communications Technical Committee.

Yu-Chi Lai, National Taiwan University of Science and Technology, Taiwan Dr. Yu-Chi Lai received his PhD degree in Electrical and Computer Engineering from University of Wisconsin, Madison in 2009 and his PhD degree in Computer Science in 2010. He is currently an assistant professor in National Taiwan University of Science and Technology and his Research interests are in the area of graphics, vision, and multimedia.

Andres Kwasinski, Rochester Institute of Technology, USA Dr Kwasinski received his Ph.D. degree in Electrical and Computer Engineering from the University of Maryland in 2004. He is currently an Assistant Professor with the Department of Computer Engineering, Rochester Institute of Technology, New York. Prior to this he was with Texas Instruments Inc., the Department of Electrical and Computer Engineering at the University of Maryland, and Lucent Technologies. He has been the Globecom 2010 Workshop Co-Chair and the Chair of the IEEE Multimedia Technical Committee Interest Group on Distributed and Sensor Networks for Mobile Media Computing and Applications.

Haohong Wang, Cisco Systems, USA Dr. Haohong Wang received the PhD degree in Electrical and Computer Engineering from Northwestern University, Evanston, USA. He is currently a Technical Leader at Cisco Systems, Milpitas, California. Prior to that, he held various technical and management positions at AT&T, Catapult Communications, Qualcomm, Marvell and TCL-Thomson Electronics. Dr Wang has published more than 40 articles in peer-reviewed journals and International conferences. He is the inventor of more than 40 U.S. patents and pending applications.