Muutke küpsiste eelistusi

E-raamat: 50 Years of First-Passage Percolation

  • Formaat: 161 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Jan-2018
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470443566
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 58,34 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 161 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Jan-2018
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470443566
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

First-passage percolation (FPP) is a fundamental model in probability theory that has a wide range of applications to other scientific areas (growth and infection in biology, optimization in computer science, disordered media in physics), as well as other areas of mathematics, including analysis and geometry. FPP was introduced in the 1960s as a random metric space. Although it is simple to define, and despite years of work by leading researchers, many of its central problems remain unsolved.

In this book, the authors describe the main results of FPP, with two purposes in mind. First, they give self-contained proofs of seminal results obtained until the 1990s on limit shapes and geodesics. Second, they discuss recent perspectives and directions including (1) tools from metric geometry, (2) applications of concentration of measure, and (3) related growth and competition models. The authors also provide a collection of old and new open questions. This book is intended as a textbook for a graduate course or as a learning tool for researchers.
Preface v
Chapter 1 Introduction
1(4)
1.1 The model of first-passage percolation and its history
1(3)
1.2 Acknowledgments
4(1)
Chapter 2 The time constant and the limit shape
5(24)
2.1 Subadditivity and the time constant
5(5)
2.2 The time constant through a homogenization problem
10(1)
2.3 The limit shape: Cox-Durrett shape theorem
11(5)
2.4 Other shape theorems
16(1)
2.5 The class of possible limit shapes
17(3)
2.6 The subadditive ergodic theorem revisited
20(2)
2.7 Gromov-Hausdorff convergence
22(3)
2.8 Strict convexity of the limit shape
25(2)
2.9 Simulations
27(2)
Chapter 3 Fluctuations and concentration bounds
29(44)
3.1 Variance bounds
29(3)
3.2 Logarithmic improvement to variance upper bound
32(7)
3.3 Logarithmic improvement to variance lower bound
39(6)
3.4 Concentration bounds
45(5)
3.5 Convergence of the mean for subadditive ergodic processes
50(11)
3.6 Large deviations
61(7)
3.7 Cases where Gaussian fluctuations appear
68(5)
Chapter 4 Geodesies
73(36)
4.1 Existence of finite geodesies and their sizes
73(10)
4.2 The wandering exponent ξ
83(9)
4.3 The scaling relation Χ = 2xi; -- 1
92(2)
4.4 Infinite geodesies
94(7)
4.5 Geodesic lines or bigeodesics
101(8)
Chapter 5 Busemann functions
109(22)
5.1 Basics of Busemann functions
109(1)
5.2 Hoffman's argument for multiple geodesies
110(2)
5.3 Directions of geodesies via Busemann functions
112(2)
5.4 Busemann increment distributions and geodesic graphs
114(7)
5.5 Busemann functions along boundaries in Z2
121(3)
5.6 Nonexistence of bigeodesics in fixed directions
124(7)
Chapter 6 Growth and competition models
131(10)
6.1 Eden Model and the limit shape in high dimensions
131(3)
6.2 First-passage competition models
134(1)
6.3 Competition with the same speed
135(2)
6.4 Competition with different speeds
137(1)
6.5 The competition interface
138(3)
Chapter 7 Variants of FPP and related models
141(10)
7.1 The maximum flow
141(2)
7.2 Variants
143(8)
Chapter 8 Summary of open questions
151(4)
Bibliography 155
Antonio Auffinger, Northwestern University, Evanston, IL.

Michael Damron, Georgia Institute of Technology, Atlanta, GA.

Jack Hanson, The City College of New York, NY.