Muutke küpsiste eelistusi

E-raamat: 5G and Satellite RF and Optical Integration

  • Formaat: 350 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819576
  • Formaat - PDF+DRM
  • Hind: 101,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 350 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819576

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

5G and Satellite RF and Optical Integration, the latest hot off the shelf groundbreaking book from Artech House authored by subject specialist Geoff Varrall is packed with essential time critical information. This updated edition has everything needed to know in order to understand the new world of terrestrial and non-terrestrial telecom technology. It analyzes the radio spectrum/band and technical specifications under consideration for 5G, along with the related performance, cost, and vertical market expectations. In addition, the book studies the cost of coexistence between 5G operators and other user communities' co-sharing spectrum, including GNSS; radio astronomers; radar; GSO, MEO, and LEO satellites in the Ku, K, and Ka bands and above; and satellite TV. Also covered is the role of free-space optical technology in 5G and satellite networks and what interference issues will arise from new band allocations. This includes co-shared allocations and how interference will be mitigated in and between next generation terrestrial and satellite 5G networks. The publication coincides with an inflection point where terrestrial, nonterrestrial, and RF and optical networks could be integrated in a financially useful way.
Preface xiii
The Best of Three? xiii
References xx
Acknowledgments xxiii
Chapter 1 5G Radio Spectrum Including RF C Band: Link Budgets and Active and Passive Device Efficiency
1(20)
1.1 New Radio: The FR 1 Bands
1(2)
1.2 FR1 C Band
3(1)
1.3 The FR2 Bands
4(4)
1.4 Smart Phone RF Front Ends
8(2)
1.5 5G Standards Including NTNs
10(5)
1.6 What Bands and Technologies Are Supported in Present Smart Phones?
15(1)
1.7 Can I Make a Phone Call On My 5G Satellite Phone?
16(1)
1.8 Defining the S-RAN and the Role of the G-WON
17(1)
1.9 Summary
17(4)
Appendix 1A Resources and References
18(2)
End Notes
20(1)
Chapter 2 Optical C Band Link Budgets and Active and Passive Device Efficiency
21(30)
2.1 The Best Way to Move Bits About?
21(1)
2.2 Guided Versus Unguided Media
22(1)
2.3 Impact of Device Efficiency on Guided and Unguided Media
22(1)
2.4 Optical Modulation and Optical Band Options for Terrestrial Fiber and Free-Space Optical Transmission
23(1)
2.5 Device Performance
24(1)
2.5.1 Device Challenges for Wavelength-Division Multiplexing
24(1)
2.5.2 Device Efficiency Comparisons
25(1)
2.6 Modulation in Short, Medium, and Long-Haul Terrestrial Fiber
25(1)
2.7 The Role of the Digital Signal Processor in RF and Optical Terrestrial and Space Networks and Legacy Copper
26(1)
2.8 The Copper-to-Fiber Transition and the Passive Optical Network
27(1)
2.9 PONs and the 5G RAN
28(3)
2.9.1 PON Performance in the 5G RAN
28(1)
2.9.2 Single-Mode and Multimode Fiber--Connector Loss and Other Losses
28(2)
2.9.3 Differentiating Intrinsic and Extrinsic Losses
30(1)
2.10 Active Optical Networks
31(1)
2.11 The 5G C-RAN, D-RAN, S-RAN, Fronthaul, Midhaul, Backhaul, Long-Haul Links
32(2)
2.12 Longhaul to Fronthaul
34(1)
2.13 Impact of H-ARQ on Fronthaul Latency
35(1)
2.14 Common Public Radio Interface and Enhanced CPRI Standards
35(3)
2.14.1 Standards Groups
35(1)
2.14.2 Fronthaul, Midhaul, and Integrated Access Backhaul (IAB)
35(1)
2.14.3 Passive Optical, Active Optical, and Point-to-Point Wireless Integration
36(2)
2.15 Point-to-Point Wireless V Band, E Band, W Band, and D Band
38(1)
2.16 5G Networks in 2023--Optical and RF Backhaul Options
39(1)
2.17 E Band Point-to-Point Radios
39(2)
2.18 Copper Versus Fiber to the Desk and Fiber to the Sofa (5G TV)
41(1)
2.19 Plastic Optical Fiber (POF)
42(1)
2.19.1 POF in the Home
42(1)
2.19.2 POF in Automotive and Medical Markets
42(1)
2.20 Power over Guided and Unguided Media
43(1)
2.20.1 Power over Copper and Cable and Fiber
43(1)
2.20.2 Power over Free Space--RF and Optical Systems
43(1)
2.21 Subsea Optical C Band
44(1)
2.22 Power over Subsea Cable
44(1)
2.23 RF and Optical Band Plan
45(2)
2.24 Summary
47(4)
End Notes
48(1)
Additional References and Resources
49(2)
Chapter 3 RF over Fiber
51(20)
3.1 Is Analog the Answer?
51(1)
3.2 Direct and Indirect Digital and Analog Modulation
52(2)
3.3 The Role of Analog Optical Transport in 5G eMBB, URLLC Repeater Applications, and In-Band-Access Backhaul (IAB)
54(3)
3.4 The Role of Analog Optical Transport (AOT) in Network Vendor Interoperability Testing (NV-IOT) [ 8]
57(2)
3.5 Enabling Technologies for Analog Optical Fiber Transport
59(1)
3.6 In-Building Distributed Antenna Systems (DAS)
60(2)
3.6.1 Passive Analog RF over Coax or Optical over Fiber DAS
60(1)
3.6.2 Active RF and Optical Digital DAS
61(1)
3.6.3 Hybrid Optical Analog and Digital DAS as an Evolution of Hybrid Coax and Fiber Analog and Digital DAS
62(1)
3.6.4 LAN over Fiber and 5G in Building Systems
62(1)
3.7 Long-Distance RF Analog Transport over Analog Fiber
62(1)
3.8 RF over Fiber for SATCOM
63(1)
3.9 RF Overlay and Legacy RF over Glass Systems
64(2)
3.10 Analog over Analog Versus Digital Analog
66(1)
3.11 The Digital Dividend
66(1)
3.12 Two Hundred Years of Telecom
67(2)
3.13 Summary
69(2)
Appendix 3A Vendors of Distributed Access Systems
70(1)
End Notes
70(1)
Chapter 4 Space RF Link Budgets
71(28)
4.1 Intersatellite RF Links (ISLs)--Introduction
71(3)
4.2 RF Applications in Space--Past, Present, and Future and Their Impact on Link Design
74(1)
4.3 Space Weather as a Component of an ISL and Space-to-Earth and Earth-to-Space Link Budget
75(2)
4.4 The Math and Mechanics of ISL (in Standard SI Units)
77(6)
4.4.1 Signal-to-Noise and Carrier-to-Noise
77(1)
4.4.2 Free-Space Loss and the Frii's Free-Space Path Loss Equation
78(1)
4.4.3 Energy per Bit and Energy per Symbol
79(1)
4.4.4 Noise as Seen by the Antenna
79(1)
4.4.5 Reuse of 5G Beamforming AAUs in Space ISL and Other Novel Options
80(3)
4.5 Power and Antenna Gain in Space-Effective Isotropic Radiated Power (EIRP)
83(1)
4.6 Filtering in Space
84(1)
4.7 Phase Noise in Space
85(1)
4.8 Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Conversion (DAC) in Space
85(1)
4.9 ISL in Existing Space Deployments
86(3)
4.9.1 TDRS
86(1)
4.9.2 European Data Relay Service
87(2)
4.10 ISLs--Differences Between Constellation ISL and Formation ISL
89(1)
4.10.1 HawkEye360 and IcEye as Two Examples of Formation-Flying RF Added Value
89(1)
4.10.2 Iridium ISL and Formation Flying
90(1)
4.11 Link Budgets, Lawyers, and WRC23
90(2)
4.12 Summary--RF and Optical in Space
92(7)
Appendix 4A Resources
93(3)
End Notes
96(3)
Chapter 5 Optical ISLs--Link and Noise Budgets and Other Considerations
99(28)
5.1 Introduction
99(5)
5.1.1 Optical and RF Transceivers
99(2)
5.1.2 Omnidirectional Light, Retroreflectors, and Simple Transceivers in Space
101(1)
5.1.3 Multidirectional PTP for Collision Avoidance
101(1)
5.1.4 Reuse of Terrestrial Optical Components in Space and HAPS
102(1)
5.1.5 Coherent Detection Versus Direct Detection
102(1)
5.1.6 Goodput and Channel-Coding Overheads in an OISL
103(1)
5.1.7 Optical Beamwidth and Pointing Loss
103(1)
5.1.8 RF Thermal Noise and Optical Quantum Noise as a Link Budget Limitation
103(1)
5.2 Homodyne, Heterodyne, and Intradyne Receivers
104(2)
5.3 Optical Conformance Testing--Noise Budgets, Signal to Noise, and Optical Signal-to-Noise Ratio
106(1)
5.4 Optical Heterodyne Noise and Gain Budgets
106(2)
5.5 Pointing Loss and Vibration Loss
108(1)
5.6 Vibration Loss, Jitter Loss, Pointing Loss, and Tracking Loss Noise Budgets
109(1)
5.7 Iridium as an Example of How a LEO Satellite Moves Around in Space, What That Does to the (RF) Link Budget, and What This Means for OISL
110(2)
5.8 Doppler Wavelength Shift and WDM OISL
112(1)
5.9 Other Sources of Noise and Distortion and Unwanted Signal Energy
113(2)
5.9.1 Microphony
113(1)
5.9.2 Unwanted Signal Energy and the PAT Subsystem
113(1)
5.9.3 Unwanted Light Energy in the Beacon Signal and Data Path
114(1)
5.9.4 Mirror Resonance and Mirror Optical Quality
115(1)
5.9.5 RX TX Light Path Mixing and Isolation
115(1)
5.10 Diffraction Limits and the Strehl Ratio as a Measure of Optical System Quality
115(1)
5.11 Laser Beam Quality and M-Squared (M2) Measurement
116(2)
5.12 Circular and Elliptical Beams Laser Choice and Its Impact on Flux Density with VCSEL as an Example
118(1)
5.13 LNAs and PAs in OISL
119(2)
5.14 Filtering
121(1)
5.15 Filtering Out Solar Noise
122(1)
5.16 Digital Filtering
123(1)
5.17 Phased-Array Optics
123(1)
5.18 5G OISL and the OISL Vendor Supply Chain
123(2)
5.19 Summary
125(2)
End Notes
125(2)
Chapter 6 Deep Space and Near Space
127(34)
6.1 Heading for the Oort Clouds
127(2)
6.2 5G Spectrum and Standards Summary
129(4)
6.2.1 The Radio Astronomy Bands
129(1)
6.2.2 Deep Space and Near Space ITU Definition
129(1)
6.2.3 Red Shift and Blue Shift
130(1)
6.2.4 Space Distance
130(1)
6.2.5 Narrow Spectral Lines
130(1)
6.2.6 Radio Frequencies and Bandwidths in Radio Astronomy
130(1)
6.2.7 Radio Astronomy History and Present Systems--The Half-Minute Summary
131(1)
6.2.8 Radio Astronomy and 5G Coexistence
132(1)
6.2.9 Why Bother About Deep Space?
132(1)
6.3 Deep Space from the Ground (RF)
133(4)
6.3.1 The Radio Story--Radar
133(1)
6.3.2 The Radio Story--The Atacama Large and Submeter Array (ALMA) as an Example of RF and Optical Integration
134(2)
6.3.3 The Radio Story-Square-Kilometer Array
136(1)
6.4 Deep Space from the Ground (Optical)
137(4)
6.4.1 Galileo and Monsieur Cassegrain--The Optical Story
137(1)
6.4.2 Optical Measurements and Precision Cosmology
138(1)
6.4.3 Optical Telescopes for Astronomy and Optical Ground Station Integration
139(1)
6.4.4 Mount Paloma
140(1)
6.4.5 The Large Binocular Telescope--Mount Graham International Observatory
141(1)
6.5 Deep Space from Deep Space--TheJWST
141(4)
6.5.1 JWST Arrives at L2
141(2)
6.5.2 K-Band Space-to-Earth Radio Links from JWST
143(1)
6.5.3 JWST and the Deep-Space Network
143(1)
6.5.4 Physical Stability on Earth and in Space
144(1)
6.6 Deep-Space and Near-Space Network Integration
145(2)
6.6.1 The Deep-Space Difference
145(1)
6.6.2 Seventy-Meter DSN Antennas
145(1)
6.6.3 The 34-m Subnetwork
146(1)
6.7 Deep Space from the Moon and CISLunar Space
147(1)
6.8 X-Rays from Deep Space
148(1)
6.9 The Near-Space Network
148(2)
6.9.1 What Is the Near-Space Network?
149(1)
6.10 TheA-ZoftheNSN
150(4)
6.11 Near Space from a Cold Place
154(1)
6.12 Near-Space Optical Network
154(1)
6.13 Deep-Space Data Rates, Latency, and CCSDS Standards
155(1)
6.14 Space Optical and Radio Standards
155(2)
6.15 Deep-Space Science
157(1)
6.16 Summary
157(4)
Appendix 6A Resources
158(1)
End Notes
158(3)
Chapter 7 Ground Station and Earth Station Hardware and Software--Challenges of Supporting LEO, MEO, and GSO Systems
161(26)
7.1 The Story So Far
161(1)
7.2 The Hyper-Linked Hyperdata Center
162(1)
7.3 Hyperdata Centers and Points of Presence
162(1)
7.4 Gateways, Ground Stations, Earth Stations, and Teleports
163(2)
7.5 Mr. Brunei, Big Ships, Landing Stations, and Long-Distance Subsea Cables
165(2)
7.6 Subsea to Terrestrial Connectivity--Scale Issues and Politics, with Africa as an Example
167(1)
7.7 Fiji to Tonga--The Cost of Cable Failure
168(1)
7.8 Subsea Cable Economics--Optical C Band Under the Sea
168(1)
7.9 From Station Clocks to Space Clocks
169(1)
7.10 Timing and Earth Station Scheduling
169(1)
7.11 Time and Positioning Accuracy
169(2)
7.12 5GatSea
171(3)
7.12.1 Ultra-Large Container Ships
171(1)
7.12.2 Safety at Sea and Automatic Identification Systems
171(1)
7.12.3 Container Ships, Cruise Ships, and Earth Stations
172(1)
7.12.4 5G at Sea and Maritime Port Integration
173(1)
7.12.5 Sea IOT
173(1)
7.12.6 Optical ESIM--C Band at Sea
173(1)
7.13 Longwave to Light--Marconi and Musk
174(1)
7.14 The Optical Outback
175(3)
7.15 Quantum Earth Stations
178(2)
7.16 Optical Computing and Optical Storage
180(1)
7.17 Ground Versus Space Complexity
181(1)
7.18 Summary
182(5)
Appendix 7A Resources--Timing and Synchronization
183(1)
End Notes
183(4)
Chapter 8 Low-Altitude Platforms
187(32)
8.1 Whatever-the-Weather Wireless
187(2)
8.2 Regulation and ATC
189(1)
8.3 Regulation of Drones
190(1)
8.4 Drone Airframe Options, Size, and Wi-Fi Data Rates
191(1)
8.5 Flying Cars and 5G Urban Air Mobility
192(1)
8.6 War Drones for War Zones
193(2)
8.7 Height, Altitude, Radio Altimeters, C-Band Protection Ratios, and In-Flight Connectivity
195(2)
8.8 Precision Flying Using MEO GPS and LEO Time and Freqency References
197(2)
8.9 Opportunistic Navigation
199(1)
8.10 Summary--Beyond-Line-of-Site (BLOS) Navigation, Communications, and Control
200(1)
8.11 Large and Lost at Sea Malaysian Airlines MH 370
200(1)
8.12 Aviation Radio Spectrum
201(5)
8.12.1 Band Fundamentals
201(1)
8.12.2 Model-Aircraft Radio Control
202(1)
8.12.3 The Aviation Bands
203(2)
8.12.4 First-Person-View Drone Frequencies in the ISM Bands
205(1)
8.13 WRC23
206(1)
8.14 Longwave, Medium-Wave, Shortwave, and VHF Radio Systems at WRC-23
206(1)
8.15 In-Flight Connectivity
207(1)
8.16 5GATGIFC
208(2)
8.17 SIMS, Multi-SIMS, and ESIMS and the 5G ATG Link Budget
210(1)
8.18 Connecting from Above Using Optimized Single-Band Radios as an Alternative to 5G ATG
211(3)
8.19 Optical Versus RF from 0 to 100 km--Shannon and RF and Optical Link Budgets
214(2)
8.19.1 High-Power High-Tower Cellular Repurposed for 5G ATG
214(1)
8.19.2 Market Scale and the Shannon Limit
214(1)
8.19.3 Aircraft Size and the Shannon Limit
215(1)
8.19.4 The 33-Layer Atmospheric Model
215(1)
8.19.5 Optical Scattering and Adaptive Optics--Greenwood, Mie, and Fraunhofer
215(1)
8.20 Optical Control of Drones and UAVs
216(1)
8.21 Plane Spotting from Space
216(1)
8.22 Summary
217(2)
End Notes
217(2)
Chapter 9 High-Altitude Platforms
219(12)
9.1 5G HAPS--The Basics
219(5)
9.2 HAPS Alliance, the GSMA, and ITU HAPS Spectrum Allocations
224(3)
9.2.1 L-Band and S-Band HAPS Mobile Spectrum
224(1)
9.2.2 Other HAPS Mobile Spectrum in Low Band (UHF) and Mid Band (L Band and S Band)
225(1)
9.2.3 HAPS Fixed Service Spectrum
225(1)
9.2.4 V Band, W Band, and E Band for HAPS
226(1)
9.3 Platforms and Power
227(1)
9.4 Hydrogen Versus Helium for HAPS
228(1)
9.5 RF Versus Optical
229(2)
End Notes
229(2)
Chapter 10 RF and Optical Technology Enablers
231(8)
10.1 The Five Gs--RF Technology Time Scales
231(2)
10.2 The Ten Gs--Optical Technology Time Scales
233(1)
10.3 Electronics Versus Photonics
234(1)
10.4 From 2D to 5D--Optical Computers and Photonic Storage
235(1)
10.5 Summary--Light at the Enciof a Tunnel
236(3)
End Notes
236(3)
Chapter 11 Technology Economics of RF and Fiber for Terrestrial and Space Networks
239(6)
11.1 Link Budget Economics
239(1)
11.2 Moore's Law and Our Law--the Law of the Dollar and the Decibel and the Impact of the Link Budget on RF and Optical Network Economics
239(2)
11.3 Space Value Versus Terrestrial Value
241(1)
11.4 Space Costs
241(1)
11.5 Space Spectrum
242(1)
11.6 Space Standards
242(1)
11.7 6G and Satellite RF and Optical Spectrum Standards and Scale
242(3)
End Notes
243(2)
About the Author 245(2)
Index 247