Preface |
|
xv | |
Attributions |
|
xvii | |
Symbol Description |
|
xix | |
I Functional Calculus |
|
1 | (238) |
|
|
3 | (102) |
|
|
3 | (6) |
|
|
3 | (2) |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (4) |
|
1.1.2.1 Axioms and theorems |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (25) |
|
1.2.1 Universal structures |
|
|
9 | (3) |
|
1.2.1.1 Multiary relations |
|
|
10 | (1) |
|
1.2.1.2 Binary internal relations |
|
|
11 | (1) |
|
|
12 | (6) |
|
1.2.2.1 Families and products |
|
|
12 | (2) |
|
|
14 | (2) |
|
|
16 | (2) |
|
1.2.3 Equivalence relations |
|
|
18 | (1) |
|
1.2.3.1 Equivalence classes |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (15) |
|
1.2.4.1 Preorders and orders |
|
|
19 | (3) |
|
|
22 | (5) |
|
1.2.4.3 Filters, ideals, and bornologies |
|
|
27 | (5) |
|
|
32 | (2) |
|
|
34 | (71) |
|
|
34 | (7) |
|
1.3.1.1 Multiary operations |
|
|
34 | (1) |
|
1.3.1.2 Universal algebras |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (2) |
|
1.3.1.6 Binary internal operations |
|
|
40 | (1) |
|
|
41 | (12) |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (4) |
|
|
48 | (2) |
|
|
50 | (3) |
|
|
53 | (8) |
|
|
53 | (6) |
|
|
59 | (2) |
|
1.3.4 Modules and algebras |
|
|
61 | (6) |
|
|
61 | (5) |
|
|
66 | (1) |
|
1.3.5 Effect algebras and Boolean algebras |
|
|
67 | (9) |
|
|
68 | (5) |
|
|
73 | (3) |
|
|
76 | (12) |
|
1.3.6.1 Topological spaces |
|
|
76 | (1) |
|
1.3.6.2 Subsets of a topological space |
|
|
77 | (3) |
|
1.3.6.3 Bases and subbases |
|
|
80 | (1) |
|
1.3.6.4 Separation properties |
|
|
81 | (3) |
|
|
84 | (3) |
|
1.3.6.6 Convergence topologies |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
1.3.7.2 Uniform topologies |
|
|
89 | (1) |
|
|
89 | (6) |
|
1.3.8.1 Pseudometric spaces |
|
|
90 | (3) |
|
|
93 | (2) |
|
|
95 | (10) |
|
|
95 | (2) |
|
|
97 | (2) |
|
1.3.9.3 Absolute semivalues |
|
|
99 | (1) |
|
|
99 | (5) |
|
1.3.9.5 Algebra seminorms |
|
|
104 | (1) |
|
|
105 | (28) |
|
2.1 Limits of filters and functions |
|
|
105 | (13) |
|
2.1.1 Limits of filter bases |
|
|
105 | (4) |
|
2.1.1.1 Limits and agglomerations |
|
|
105 | (2) |
|
2.1.1.2 Ultrafilter limits |
|
|
107 | (1) |
|
2.1.1.3 Limits superior and inferior |
|
|
108 | (1) |
|
2.1.2 Limits of functions |
|
|
109 | (9) |
|
|
109 | (2) |
|
2.1.2.2 Topological notion |
|
|
111 | (1) |
|
2.1.2.3 Analytical notion |
|
|
112 | (1) |
|
|
112 | (1) |
|
2.1.2.5 Limits superior and inferior |
|
|
113 | (1) |
|
|
114 | (4) |
|
2.2 Limits of nets and sequences |
|
|
118 | (15) |
|
|
118 | (8) |
|
|
118 | (2) |
|
2.2.1.2 Topological notion |
|
|
120 | (1) |
|
2.2.1.3 Analytical notion |
|
|
120 | (1) |
|
2.2.1.4 Limits of functions through nets |
|
|
120 | (1) |
|
2.2.1.5 Limits superior and inferior |
|
|
121 | (1) |
|
2.2.1.6 Limits of subnets |
|
|
122 | (2) |
|
|
124 | (2) |
|
2.2.2 Limits of sequences |
|
|
126 | (7) |
|
2.2.2.1 Equivalence of limits |
|
|
126 | (1) |
|
2.2.2.2 Limits of subsequences |
|
|
127 | (1) |
|
|
127 | (2) |
|
|
129 | (1) |
|
2.2.2.5 Completion of a metric space |
|
|
130 | (3) |
|
|
133 | (106) |
|
|
133 | (14) |
|
3.1.1 Pointwise continuity |
|
|
133 | (7) |
|
3.1.1.1 Continuity in topological spaces |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (4) |
|
|
140 | (3) |
|
3.1.2.1 Uniform continuity in uniform spaces |
|
|
140 | (1) |
|
3.1.2.2 Index of uniform continuity |
|
|
140 | (1) |
|
3.1.2.3 Lipschitz functions |
|
|
141 | (1) |
|
3.1.2.4 Nonexpansive and contractive functions |
|
|
142 | (1) |
|
3.1.3 Universal topologies |
|
|
143 | (4) |
|
|
143 | (3) |
|
|
146 | (1) |
|
3.2 Topological operations |
|
|
147 | (94) |
|
3.2.1 Topological universal algebras |
|
|
147 | (1) |
|
3.2.1.1 Continuous multiary operations |
|
|
147 | (1) |
|
3.2.1.2 Continuous operators |
|
|
148 | (1) |
|
|
148 | (11) |
|
|
148 | (1) |
|
3.2.2.2 Semigroup topologies |
|
|
149 | (1) |
|
3.2.2.3 Monoid topologies |
|
|
149 | (2) |
|
|
151 | (4) |
|
3.2.2.5 Convergence group topologies |
|
|
155 | (3) |
|
|
158 | (1) |
|
3.2.2.7 Seminormed groups |
|
|
158 | (1) |
|
|
159 | (18) |
|
|
159 | (3) |
|
3.2.3.2 Unit zero-neighborhoods |
|
|
162 | (3) |
|
|
165 | (1) |
|
3.2.3.4 Topological zero-divisors |
|
|
165 | (2) |
|
3.2.3.5 Convergence ring topologies |
|
|
167 | (1) |
|
3.2.3.6 Closed unit segments |
|
|
168 | (5) |
|
|
173 | (3) |
|
3.2.3.8 Absolutely semivalued rings |
|
|
176 | (1) |
|
3.2.4 Topological modules |
|
|
177 | (55) |
|
3.2.4.1 Module topologies |
|
|
177 | (6) |
|
|
183 | (2) |
|
3.2.4.3 Convergence linear topologies |
|
|
185 | (3) |
|
|
188 | (3) |
|
|
191 | (12) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (3) |
|
|
208 | (4) |
|
|
212 | (13) |
|
|
225 | (4) |
|
3.2.4.12 Topological manifolds |
|
|
229 | (1) |
|
3.2.4.13 Seminormed modules |
|
|
230 | (2) |
|
3.2.5 Topological algebras |
|
|
232 | (9) |
|
3.2.5.1 Algebra topologies |
|
|
232 | (3) |
|
3.2.5.2 Seminormed algebras |
|
|
235 | (4) |
II Differential Calculus |
|
239 | (62) |
|
|
241 | (26) |
|
|
241 | (7) |
|
4.1.1 Leibniz's derivations |
|
|
241 | (2) |
|
|
241 | (1) |
|
|
242 | (1) |
|
4.1.2 Rules of derivations |
|
|
243 | (3) |
|
|
243 | (1) |
|
|
244 | (2) |
|
4.1.2.3 Operations with derivations |
|
|
246 | (1) |
|
|
246 | (2) |
|
4.1.3.1 Indefinite integral |
|
|
946 | |
|
|
247 | (1) |
|
4.1.3.3 Integration by parts |
|
|
247 | (1) |
|
4.1.3.4 Change of variable |
|
|
248 | (1) |
|
|
248 | (12) |
|
|
248 | (7) |
|
4.2.1.1 Directional derivative |
|
|
248 | (3) |
|
4.2.1.2 Differentiable functions |
|
|
251 | (1) |
|
4.2.1.3 Uniformly differentiable functions |
|
|
252 | (1) |
|
4.2.1.4 Derivative of the inversion |
|
|
253 | (2) |
|
4.2.2 Fundamental theorems |
|
|
255 | (5) |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (1) |
|
|
257 | (3) |
|
4.3 Differential manifolds |
|
|
260 | (7) |
|
4.3.1 Differential local linearity |
|
|
260 | (3) |
|
4.3.1.1 Differentiable atlases |
|
|
260 | (2) |
|
4.3.1.2 Differentiable maps |
|
|
262 | (1) |
|
|
263 | (4) |
|
|
263 | (1) |
|
|
264 | (3) |
|
|
267 | (34) |
|
5.1 Multiobjective optimization |
|
|
267 | (9) |
|
|
267 | (6) |
|
|
267 | (1) |
|
|
268 | (1) |
|
5.1.1.3 Pareto optimality |
|
|
269 | (4) |
|
|
273 | (3) |
|
|
273 | (1) |
|
|
274 | (2) |
|
|
276 | (6) |
|
|
276 | (5) |
|
|
277 | (3) |
|
|
280 | (1) |
|
5.2.2 Fundamental theorems |
|
|
281 | (1) |
|
5.2.2.1 Krein-Milman Theorem |
|
|
281 | (1) |
|
5.2.2.2 Bauer Minimum Principle |
|
|
282 | (1) |
|
|
282 | (21) |
|
|
282 | (11) |
|
5.3.1.1 Normalizing rings |
|
|
283 | (1) |
|
|
284 | (7) |
|
5.3.1.3 Banach-Alaoglu Theorem |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (4) |
|
5.3.2.1 Supporting vectors |
|
|
293 | (3) |
|
|
296 | (1) |
|
5.3.3 Isometric representations |
|
|
297 | (6) |
|
5.3.3.1 Isometric representations |
|
|
297 | (1) |
|
5.3.3.2 Smooth representations |
|
|
298 | (3) |
III Integral Calculus |
|
301 | (44) |
|
|
303 | (24) |
|
|
303 | (15) |
|
|
303 | (10) |
|
|
303 | (3) |
|
6.1.1.2 Unconditional convergence |
|
|
306 | (1) |
|
6.1.1.3 Subseries convergence |
|
|
307 | (1) |
|
6.1.1.4 Absolute convergence |
|
|
308 | (3) |
|
6.1.1.5 Generalized series |
|
|
311 | (2) |
|
6.1.2 Biorthogonal systems |
|
|
313 | (5) |
|
6.1.2.1 Markushevich bases |
|
|
313 | (2) |
|
|
315 | (3) |
|
6.2 Convergence and summability methods |
|
|
318 | (9) |
|
|
319 | (1) |
|
|
319 | (1) |
|
6.2.1.2 Some sequence spaces |
|
|
320 | (1) |
|
|
320 | (7) |
|
6.2.2.1 Convergence through free filters |
|
|
321 | (3) |
|
6.2.2.2 Convergence through operators |
|
|
324 | (1) |
|
|
325 | (2) |
|
|
327 | (18) |
|
|
327 | (14) |
|
7.1.1 Measures on effect algebras |
|
|
327 | (9) |
|
7.1.1.1 Classification of measures |
|
|
328 | (3) |
|
7.1.1.2 Variation of a measure |
|
|
331 | (4) |
|
|
335 | (1) |
|
|
336 | (5) |
|
|
336 | (1) |
|
7.1.2.2 Measurable spaces |
|
|
337 | (4) |
|
|
341 | (1) |
|
|
341 | (6) |
|
7.2.1 The definite integral |
|
|
342 | (5) |
|
7.2.1.1 Integrable domains |
|
|
342 | (1) |
|
7.2.1.2 Integral operators |
|
|
342 | (3) |
IV Appendix |
|
345 | (20) |
|
|
347 | (18) |
|
|
347 | (7) |
|
A.1.1 Objects and morphisms |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
350 | (2) |
|
|
352 | (1) |
|
A.1.5 Preadditive categories |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (11) |
|
|
354 | (1) |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
358 | (7) |
|
A.2.5.1 Noncommutative case |
|
|
358 | (2) |
|
|
360 | (2) |
|
A.2.5.3 Commutative multilinear case |
|
|
362 | (3) |
Bibliography |
|
365 | (6) |
Index |
|
371 | |