Muutke küpsiste eelistusi

E-raamat: Accelerator Programming Using Directives: 8th International Workshop, WACCPD 2021, Virtual Event, November 14, 2021, Proceedings

  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 8th International Workshop on Accelerator Programming Using Directives, WACCPD 2021, which took place in November 2021. The conference was held as hybrid event. 





WACCPD is one of the major forums for bringing together users, developers, and the software and tools community to share knowledge and experiences when programming emerging complex parallel computing systems. The 7 papers presented in this volume were carefully reviewed and selected from 11 submissions. They were organized in topical sections named: Directive Alternatives; Directive Extensions; and Directive Case Studies.
Can Fortran's `do concurrent' Replace Directives for Accelerated
Computing?.- Achieving near native runtime performance and cross-platform
performance portability for random number generation through SYCL
interoperability.- Extending OpenMP for Machine Learning-Driven Adaptation.-
GPU porting of scalable implicit solver with Greens function-based neural
networks by OpenACC.- Challenges Porting a C++ Template-Metaprogramming
Abstraction Layer to Directive-based Offloading.- Accelerating quantum
many-body configuration interaction with directives.- GPU offloading of a
large-scale gyrokinetic particle-in-cell Fortran code: From OpenACC to OpenMP.