Muutke küpsiste eelistusi

E-raamat: Active Sensor Planning for Multiview Vision Tasks

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jan-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540770725
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jan-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540770725
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An active robot system can change its visual parameters in an intentional manner and perform its sensing actions purposefully. A general vision task thus can be performed in an efficient way by means of strategic control of the perception process. The controllable processes include 3D active sensing, sensor configuration and recalibration, automatic sensor placement, and 3D sensing. This book explores these important issues in studying for active visual perception.









Vision sensors have limited fields of views and can only "see" a portion of a scene from a single viewpoint. To make the entire object visible, the sensor has to be moved from one place to another around the object to observe all features of interest. The sensor planning presented in this book describes an effective strategy to generate a sequence of viewing poses and sensor settings for optimally completing a perception task. Several methods are proposed to solve the problems in both model-based and nonmodel-based vision tasks. For model-based applications, the method involves determination of the optimal sensor placements and a shortest path through these viewpoints for automatic generation of a perception plan. A topology of viewpoints is achieved by a genetic algorithm in which a min-max criterion is used for evaluation. A shortest path is also determined by graph algorithms. For nonmodel-based applications, the method involves determination of the best next view and sensor settings. The trend surface is proposed as the cue to predict the unknown portion of an object or environment.









The 11 chapters in Active Vision Planning draw on recent work in robot vision over ten years, particularly in the use of new concepts of active sensing, reconfiguration, recalibration, sensor model, sensing constraints, sensing evaluation, viewpoint decision, sensor placement graph, model based planning, path planning, planning for robot in unknown environment, dynamic 3D construction,surface prediction, etc. Implementation examples are also provided with theoretical methods for testing in a real robot system. With these optimal sensor planning strategies, this book will give the robot vision system the adaptability needed in many practical applications.
Preface V
Chapter 1 Introduction 1
1.1 Motivations
1
1.1.1 The Tasks
1
1.1.2 From a Biological View
3
1.1.3 The Problems and Goals
4
1.1.4 Significance and Applications
6
1.2 Objectives and Solutions
7
1.3 Book Structure
8
Chapter 2 Active Vision Sensors 11
2.1 3D Visual Sensing by Machine Vision
11
2.1.1 Passive Visual Sensing
11
2.1.2 Active Visual Sensing
14
2.2 3D Sensing by Stereo Vision Sensors
19
2.2.1 Setup with Two Cameras
19
2.2.2 Projection Geometry
20
2.2.3 3D Measurement Principle
21
2.3 3D Sensing by Stripe Light Vision Sensors
23
2.3.1 Setup with a Switchable Line Projector
23
2.3.2 Coding Method
24
2.3.3 Measurement Principle
25
2.4 3D Sensor Reconfiguration and Recalibration
27
2.4.1 The Motivation for Sensor Reconfiguration and Recalibration
28
2.4.2 Setup of a Reconfigurable System
29
2.4.3 Geometrical Constraint
33
2.4.4 Rectification of Stripe Locations
34
2.4.5 Solution Using the Geometrical Cue
35
2.5 Summary
38
Chapter 3 Active Sensor Planning – the State-of-the-Art 39
3.1 The Problem
39
3.2 Overview of the Recent Development
40
3.3 Fundamentals of Sensor Modeling and Planning
43
3.4 Planning for Dimensional Inspection
48
3.5 Planning for Recognition and Search
51
3.6 Planning for Exploration, Navigation, and Tracking
54
3.7 Planning for Assembly and Disassembly
59
3.8 Planning with Illumination
60
3.9 Other Planning Tasks
63
3.9.1 Interactive Sensor Planning
63
3.9.2 Placement for Virtual Reality
64
3.9.3 Robot Localization
64
3.9.4 Attention and Gaze
65
3.10 Summary
66
Chapter 4 Sensing Constraints and Evaluation 67
4.1 Representation of Vision Sensors
67
4.2 Placement Constraints
68
4.2.1 Visibility
68
4.2.2 Viewing Angle
69
4.2.3 Field of View
69
4.2.4 Resolution
70
4.2.5 In Focus and Viewing Distance
71
4.2.6 Overlap
72
4.2.7 Occlusion
72
4.2.8 Image Contrast
73
4.2.9 Robot Environment Constraints
73
4.3 Common Approaches to Viewpoint Evaluation
75
4.4 Criterion of Lowest Operation Cost
77
4.5 Summary
80
Chapter 5 Model-Based Sensor Planning 81
5.1 Overview of the Method
81
5.2 Sensor Placement Graph
82
5.2.1 HGA Representation
82
5.2.2 Min-Max Objective and Fitness Evaluation
83
5.2.3 Evolutionary Computing
84
5.3 The Shortest Path
85
5.3.1 The Viewpoint Distance
85
5.3.2 Determination of a Shortest Path
86
5.4 Practical Considerations
87
5.4.1 Geometry Scripts
87
5.4.2 Inspection Features
87
5.4.3 Sensor Structure
88
5.4.4 Constraint Satisfaction
89
5.4.5 Viewpoint Initialization
90
5.5 Implementation
92
5.5.1 The Viewpoint Planner
92
5.5.2 Examples of Planning Results
92
5.5.3 Viewpoint Observation
97
5.5.4 Experiments with a Real System
98
5.6 Summary
100
Chapter 6 Planning for Freeform Surface Measurement 101
6.1 The Problem
101
6.2 B-Spline Model Representation
104
6.2.1 B-Spline Representation
104
6.2.2 Model Selection
105
6.3 Uncertainty Analysis
108
6.4 Sensing Strategy for Optimizing Measurement
110
6.4.1 Determining the Number of Measurement Data
110
6.4.2 Optimizing the Locations of Measurement Data
110
6.5 Experiments
112
6.6 Summary
118
Chapter 7 Sensor Planning for Object Modeling 119
7.1 Planning Approaches to Model Construction
119
7.1.1 Model Construction from Multiple Views
119
7.1.2 Previous Planning Approaches for Modeling
122
7.2 The Procedure for Model Construction
124
7.3 Self-Termination Criteria
127
7.3.1 The Principle
127
7.3.2 Termination Judgment
128
7.4 Experiments
131
7.5 Summary
144
Chapter 8 Information Entropy Based Planning 147
8.1 Overview
147
8.2 Model Representation
148
8.2.1 Curve Approximation
149
8.2.2 Improved BIC Criterion
150
8.3 Expected Error
154
8.3.1 Information Entropy of a B-Spline Model
155
8.3.2 Information Gain
156
8.4 View Planning
157
8.5 Experiments
159
8.5.1 Setup
159
8.5.2 Model Selection
160
8.5.3 Determining the NBV
163
8.5.4 Another Example
172
8.6 Summary
175
Chapter 9 Model Prediction and Sensor Planning 177
9.1 Surface Trend and Target Prediction
177
9.1.1 Surface Trend
177
9.1.2 Determination of the Exploration Direction
179
9.1.3 Surface Prediction
182
9.2 Determination of the Next Viewpoint
183
9.3 Simulation
186
9.3.1 Practical Considerations
186
9.3.2 Numerical Simulation
187
9.4 Practical Implementation
191
9.5 Discussion and Conclusion
203
9.5.1 Discussion
203
9.5.2 Conclusion
205
Chapter 10 Integrating Planning with Active Illumination 207
10.1 Introduction
207
10.2 From Human Vision to Machine Vision
209
10.3 Evaluation of Illumination Conditions
210
10.3.1 SNR
210
10.3.2 Dynamic Range
210
10.3.3 Linearity
211
10.3.4 Contrast
211
10.3.5 Feature Enhancement
211
10.4 Controllable Things
212
10.4.1 Brightness
212
10.4.2 Color Temperature and Color Rendering Index
212
10.4.3 Glare
213
10.4.4 Uniform Intensity
213
10.5 Glare Avoidance
214
10.5.1 Disability Glare
214
10.5.2 Discomfort Glare
215
10.6 Intensity Estimation
216
10.6.1 Sensor Sensitivity
216
10.6.2 Estimation of Image Irradiance
217
10.7 Intensity Control
221
10.7.1 The Setpoint
221
10.7.2 System Design
223
10.8 Simulation
224
10.9 Implementation
227
10.9.1 Design for Active Illumination
227
10.9.2 Experimental Robots
228
10.10 Summary
231
Bibliography 233
A
233
B
234
C
235
D, E
237
F, G
238
H
240
I, J
242
K
243
L
244
M
246
N, O, P, Q
248
R
250
S
251
T
254
U, V, W
255
X, Y, Z
257
Index 261