Muutke küpsiste eelistusi

E-raamat: Active Sensors For Local Planning In Mobile Robotics

(Univ Of Oxford, Uk)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 40,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes recent work on active sensors for mobile robots. An active sensor interacts with its surroundings to supply data on demand for a particular function, gathering and abstracting information according to need rather than acting as a generic data gatherer. Details of the physical operation are hidden.The book deals mainly with active range sensors, which provide rapid information for local planning, describing extraction of two-dimensional features such as lines, corners and cylinders to reconstruct a plan of a building. It is structured according to the physical principles of the sensors, since to a large extent these determine the function of the sensors and the methods of processing. Recent work using sonar, optoelectronic sensors and radar is described. Sections on vision and on sensor management develop the idea of software adaptation for efficient operation in a changing environment.
Preface v
Introduction
3(10)
Architectures for Planning and Perception
3(5)
Range Sensing Technologies
8(1)
Planning Demands
9(4)
The Mapping and Localisation Problem
13(8)
Simultaneous Localisation and Map Building
13(8)
The Map-Building Process
14(1)
The Coupling of Map Estimates
15(2)
Simultaneous Localisation and Map-Building with the EKF
17(4)
Perception at Millimetre Wavelengths
21(20)
Sensor Operation
22(2)
The Sensor
24(1)
Antenna Properties
25(4)
The Circular Antenna
26(3)
Altering Aperture Shape
29(4)
Antenna Arrays
32(1)
Focused Transducers
33(1)
Target Properties
33(4)
Smooth Surfaces: The Specular Model
34(1)
Rough Surfaces
35(1)
Scattering Cross Section
36(1)
Attenuation in the Transmission Medium
37(2)
Beam Spreading
38(1)
Losses
38(1)
Summary
39(2)
Advanced Sonar: Principles of Operation and Interpretation
41(20)
Single Return Sonar
41(6)
Mapping and Navigation Using Single Return Sonar
44(1)
Occupancy Grid Representation
44(2)
Landmark Based Mapping
46(1)
The Geometric Target Primitives
47(1)
Advanced Sonar: The Sonar Signature
47(4)
Range Signature
48(2)
Orientation Signature
50(1)
Rough Surfaces
51(1)
Acquiring the Sonar Signature
51(9)
Single Frequency Sonar
52(1)
Improving Range Accuracy: The Correlation Receiver
52(2)
Pulse Compression Sonar
54(2)
Continuous Wave Frequency Modulated Sonar
56(4)
Doppler Effects
60(1)
Summary
60(1)
Smooth and Rough Target Modelling: Examples in Mapping and Texture Classification
61(18)
Power Received by the Transducer
61(1)
Smooth Surface Model
62(6)
Backscattering Coefficient
62(1)
The Target Geometry Coefficient
63(1)
Mapping Experiments
63(1)
Finding the Position of Each Feature
64(1)
Finding Geometric Type
65(1)
Data Integration
65(3)
Rough Surface Planar Models
68(4)
Backscattering Coefficient of Rough Surface
69(1)
Finding Position of Rough Surfaces
70(2)
Mapping Heterogeneous Environments
72(1)
Texture: Classifying Surfaces
72(5)
Reflections from Real Surfaces
73(2)
Pathways Classification
75(1)
Finding Suitable Features
76(1)
Remarks
77(1)
Summary
77(2)
Sonar Systems: A Biological Perspective
79(32)
Introduction
79(2)
Echo Formation
81(5)
Transformations
82(2)
Reflection
84(1)
Reflections from a Planar Reflector
84(1)
Reflections from a Corner
85(1)
Reflections from an Edge
86(1)
Monaural Sensing
86(2)
Inverting the Echo Formation Process
87(1)
Extraction of Information: Cochlear Processing
87(1)
Multi-Aural Sensing
88(21)
Echo Amplitude and Echo Arrival Time: Two transmitters, Two receivers
89(1)
Sensor Setup
89(1)
Localisation of Planes and Corners
90(1)
Recognition of Planes and Corners
91(2)
Echo Arrival Time Information: Two Transmitters, Two Receivers
93(1)
Sensor Setup
94(1)
Localisation of Edges and Planes/Corners
94(1)
Recognition of Edges, Planes and Corners
95(2)
Echo Arrival Time Information: One Transmitter, Three Receivers
97(1)
Sensor Setup
97(1)
Localisation of Edges and Planes/Corners
98(1)
Recognition of Edges, Planes and Corners
99(2)
Localisation of Curved Reflectors
101(2)
One Transmitter, Two Receivers: 3 Dimensional World Model
103(1)
Sensor Setup
104(1)
Localisation of a Point-Like Reflector in 3D
105(4)
Summary
109(2)
Map Building from Range Data Using Mathematical Morphology
111(26)
Introduction
111(3)
Basics of Sonar Sensing
114(1)
Processing of the Sonar Data
115(10)
Morphological Processing
117(2)
Curve Fitting
119(2)
Simulation Results
121(1)
Linear Arrays
121(1)
Circular Arrays
122(1)
Arbitrarily-Distributed Sensors
122(3)
Experimental Verification
125(8)
System Description
125(3)
Experimental Results
128(5)
Computational Cost of the Method
133(1)
Discussion and Conclusions
133(4)
Millimetre Wave Radar for Robotics
137(28)
Background
137(1)
When to Use Millimetre Wave Radar
138(2)
Millimetre Wave Radar Principles
140(11)
Range Resolution
140(1)
Pulse Compression
141(1)
Stepped Frequency
142(1)
Frequency Modulated Continuous Wave
143(3)
Angular Resolution and Antennas
146(2)
Scanning and Imaging
148(1)
Mechanical Scanning
148(1)
Electronic Scanning
148(1)
Image Representation
149(2)
Review of Work Done in the Field
151(5)
Indoor Applications
151(1)
Technische Universitat Munchen
151(2)
St. Petersburg State Technical University
153(1)
Outdoor Applications
153(1)
Robotics Institute: Carnegie Mellon University
153(1)
Helsinki University of Technology
154(1)
Australian Centre for Field Robotics: Sydney University
154(2)
Airborne Radar Systems
156(3)
Imaging Range and Resolution
156(2)
Results
158(1)
Waypoint Navigation Process
159(3)
Navigation Error Estimation
161(1)
Results
161(1)
Summary
162(3)
Optoelectronic Range Sensors
165(28)
Introduction
165(1)
Range-Finders
165(1)
Introduction
165(1)
Radiometric Design
166(11)
Specular Reflection
168(3)
Diffuse Reflection
171(1)
The Emitter and Detector
172(2)
Optical Geometry
174(3)
Ranging Sensors
177(9)
Triangulation
177(3)
Lidar
180(1)
Pulsed Modulation
181(1)
Amplitude Modulation Continuous Wave
182(2)
Frequency Modulation Continuous Wave
184(2)
Scanning Range-Finders
186(7)
Introduction
186(1)
Scanning Methods
186(1)
Holographic Scanners
187(1)
Acousto-Optic Scanners
187(1)
Some Scanning Sensors
188(1)
The Sick Sensor: Pulsed Lidar
188(1)
AMCW Lidar Sensors
188(1)
FMCW Lidar
189(1)
Summary
190(3)
AMCW LIDAR Range Acquisition
193(30)
Introduction
193(2)
Critical Lidar Design Factors
195(2)
Performance Limits - Noise
197(1)
AMCW Lidar Modules
198(2)
Causes of, and Remedies for, Range Errors
200(8)
Systematic Range Errors
200(4)
Random Range Errors
204(1)
Multiple Path Reflections
205(3)
Correct Calibration Procedures
208(4)
Possible Scanning Speed
212(5)
3D Range/Amplitude Scanning - Results
217(2)
Summary
219(4)
Extracting Lines and Curves from Optoelectronic Range Data
223(16)
The Optoelectronic Sensors
224(3)
The Triangulation (LEP) Sensor
224(2)
The SICK Sensor
226(1)
Perception Laser Scanner
226(1)
Feature Extraction and Processing
227(11)
Kalman Filter for Straight Line Extraction
228(1)
Extended Kalman Filter Equations
229(1)
Cartesian to Polar Co-ordinates
230(1)
Initialisation Phase
231(1)
Recursive Implementation
231(1)
Feature Segmentation
232(1)
Elliptical Sections
233(5)
Conclusions
238(1)
Acknowledgments
238(1)
Active Vision for Mobile Robot Navigation
239(32)
Vision for Mobile Robots
239(5)
Active Vision
240(1)
Navigation Using Active Vision
241(1)
A Robot Platform with Active Vision
242(2)
Scene Features
244(7)
Detecting Features
244(3)
Searching for and Matching Features
247(2)
Other Feature Types
249(2)
Fixation
251(3)
Acquiring Features
251(1)
The Accuracy of Fixated Measurements
252(2)
Localisation and Map-Building
254(5)
An Extended Experiment
254(5)
Continuous Feature Tracking
259(2)
A Fixation Strategy for Localisation
261(5)
Choosing from Known Features
262(1)
Experiments
263(3)
Steering Control and Context-Based Navigation
266(3)
Steering a Twisting Course
266(3)
Summary
269(2)
Strategies for Active Sensor Management
271(20)
Introduction
271(4)
Simple Signal Processing Tools
275(3)
Reconfigurable Sensors and Signal Processing Tools
278(4)
A Sensor-Centred Image Segmentation Algorithm
282(2)
Signal Processing Tool Selection Strategies
284(3)
Dynamic Signal Processing Tool Scheduling
287(2)
Conclusions
289(2)
Bibliography 291(16)
Appendix A: Contact Details of Authors 307(4)
Index 311