Preface |
|
v | |
|
|
3 | (10) |
|
Architectures for Planning and Perception |
|
|
3 | (5) |
|
Range Sensing Technologies |
|
|
8 | (1) |
|
|
9 | (4) |
|
The Mapping and Localisation Problem |
|
|
13 | (8) |
|
Simultaneous Localisation and Map Building |
|
|
13 | (8) |
|
|
14 | (1) |
|
The Coupling of Map Estimates |
|
|
15 | (2) |
|
Simultaneous Localisation and Map-Building with the EKF |
|
|
17 | (4) |
|
Perception at Millimetre Wavelengths |
|
|
21 | (20) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (4) |
|
|
26 | (3) |
|
|
29 | (4) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (4) |
|
Smooth Surfaces: The Specular Model |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
Attenuation in the Transmission Medium |
|
|
37 | (2) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
Advanced Sonar: Principles of Operation and Interpretation |
|
|
41 | (20) |
|
|
41 | (6) |
|
Mapping and Navigation Using Single Return Sonar |
|
|
44 | (1) |
|
Occupancy Grid Representation |
|
|
44 | (2) |
|
|
46 | (1) |
|
The Geometric Target Primitives |
|
|
47 | (1) |
|
Advanced Sonar: The Sonar Signature |
|
|
47 | (4) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
51 | (1) |
|
Acquiring the Sonar Signature |
|
|
51 | (9) |
|
|
52 | (1) |
|
Improving Range Accuracy: The Correlation Receiver |
|
|
52 | (2) |
|
|
54 | (2) |
|
Continuous Wave Frequency Modulated Sonar |
|
|
56 | (4) |
|
|
60 | (1) |
|
|
60 | (1) |
|
Smooth and Rough Target Modelling: Examples in Mapping and Texture Classification |
|
|
61 | (18) |
|
Power Received by the Transducer |
|
|
61 | (1) |
|
|
62 | (6) |
|
Backscattering Coefficient |
|
|
62 | (1) |
|
The Target Geometry Coefficient |
|
|
63 | (1) |
|
|
63 | (1) |
|
Finding the Position of Each Feature |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (3) |
|
Rough Surface Planar Models |
|
|
68 | (4) |
|
Backscattering Coefficient of Rough Surface |
|
|
69 | (1) |
|
Finding Position of Rough Surfaces |
|
|
70 | (2) |
|
Mapping Heterogeneous Environments |
|
|
72 | (1) |
|
Texture: Classifying Surfaces |
|
|
72 | (5) |
|
Reflections from Real Surfaces |
|
|
73 | (2) |
|
|
75 | (1) |
|
Finding Suitable Features |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (2) |
|
Sonar Systems: A Biological Perspective |
|
|
79 | (32) |
|
|
79 | (2) |
|
|
81 | (5) |
|
|
82 | (2) |
|
|
84 | (1) |
|
Reflections from a Planar Reflector |
|
|
84 | (1) |
|
Reflections from a Corner |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (2) |
|
Inverting the Echo Formation Process |
|
|
87 | (1) |
|
Extraction of Information: Cochlear Processing |
|
|
87 | (1) |
|
|
88 | (21) |
|
Echo Amplitude and Echo Arrival Time: Two transmitters, Two receivers |
|
|
89 | (1) |
|
|
89 | (1) |
|
Localisation of Planes and Corners |
|
|
90 | (1) |
|
Recognition of Planes and Corners |
|
|
91 | (2) |
|
Echo Arrival Time Information: Two Transmitters, Two Receivers |
|
|
93 | (1) |
|
|
94 | (1) |
|
Localisation of Edges and Planes/Corners |
|
|
94 | (1) |
|
Recognition of Edges, Planes and Corners |
|
|
95 | (2) |
|
Echo Arrival Time Information: One Transmitter, Three Receivers |
|
|
97 | (1) |
|
|
97 | (1) |
|
Localisation of Edges and Planes/Corners |
|
|
98 | (1) |
|
Recognition of Edges, Planes and Corners |
|
|
99 | (2) |
|
Localisation of Curved Reflectors |
|
|
101 | (2) |
|
One Transmitter, Two Receivers: 3 Dimensional World Model |
|
|
103 | (1) |
|
|
104 | (1) |
|
Localisation of a Point-Like Reflector in 3D |
|
|
105 | (4) |
|
|
109 | (2) |
|
Map Building from Range Data Using Mathematical Morphology |
|
|
111 | (26) |
|
|
111 | (3) |
|
|
114 | (1) |
|
Processing of the Sonar Data |
|
|
115 | (10) |
|
|
117 | (2) |
|
|
119 | (2) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
Arbitrarily-Distributed Sensors |
|
|
122 | (3) |
|
Experimental Verification |
|
|
125 | (8) |
|
|
125 | (3) |
|
|
128 | (5) |
|
Computational Cost of the Method |
|
|
133 | (1) |
|
Discussion and Conclusions |
|
|
133 | (4) |
|
Millimetre Wave Radar for Robotics |
|
|
137 | (28) |
|
|
137 | (1) |
|
When to Use Millimetre Wave Radar |
|
|
138 | (2) |
|
Millimetre Wave Radar Principles |
|
|
140 | (11) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
Frequency Modulated Continuous Wave |
|
|
143 | (3) |
|
Angular Resolution and Antennas |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
Review of Work Done in the Field |
|
|
151 | (5) |
|
|
151 | (1) |
|
Technische Universitat Munchen |
|
|
151 | (2) |
|
St. Petersburg State Technical University |
|
|
153 | (1) |
|
|
153 | (1) |
|
Robotics Institute: Carnegie Mellon University |
|
|
153 | (1) |
|
Helsinki University of Technology |
|
|
154 | (1) |
|
Australian Centre for Field Robotics: Sydney University |
|
|
154 | (2) |
|
|
156 | (3) |
|
Imaging Range and Resolution |
|
|
156 | (2) |
|
|
158 | (1) |
|
Waypoint Navigation Process |
|
|
159 | (3) |
|
Navigation Error Estimation |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (3) |
|
Optoelectronic Range Sensors |
|
|
165 | (28) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (11) |
|
|
168 | (3) |
|
|
171 | (1) |
|
|
172 | (2) |
|
|
174 | (3) |
|
|
177 | (9) |
|
|
177 | (3) |
|
|
180 | (1) |
|
|
181 | (1) |
|
Amplitude Modulation Continuous Wave |
|
|
182 | (2) |
|
Frequency Modulation Continuous Wave |
|
|
184 | (2) |
|
|
186 | (7) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
The Sick Sensor: Pulsed Lidar |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (3) |
|
AMCW LIDAR Range Acquisition |
|
|
193 | (30) |
|
|
193 | (2) |
|
Critical Lidar Design Factors |
|
|
195 | (2) |
|
Performance Limits - Noise |
|
|
197 | (1) |
|
|
198 | (2) |
|
Causes of, and Remedies for, Range Errors |
|
|
200 | (8) |
|
|
200 | (4) |
|
|
204 | (1) |
|
Multiple Path Reflections |
|
|
205 | (3) |
|
Correct Calibration Procedures |
|
|
208 | (4) |
|
|
212 | (5) |
|
3D Range/Amplitude Scanning - Results |
|
|
217 | (2) |
|
|
219 | (4) |
|
Extracting Lines and Curves from Optoelectronic Range Data |
|
|
223 | (16) |
|
The Optoelectronic Sensors |
|
|
224 | (3) |
|
The Triangulation (LEP) Sensor |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
226 | (1) |
|
Feature Extraction and Processing |
|
|
227 | (11) |
|
Kalman Filter for Straight Line Extraction |
|
|
228 | (1) |
|
Extended Kalman Filter Equations |
|
|
229 | (1) |
|
Cartesian to Polar Co-ordinates |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (5) |
|
|
238 | (1) |
|
|
238 | (1) |
|
Active Vision for Mobile Robot Navigation |
|
|
239 | (32) |
|
|
239 | (5) |
|
|
240 | (1) |
|
Navigation Using Active Vision |
|
|
241 | (1) |
|
A Robot Platform with Active Vision |
|
|
242 | (2) |
|
|
244 | (7) |
|
|
244 | (3) |
|
Searching for and Matching Features |
|
|
247 | (2) |
|
|
249 | (2) |
|
|
251 | (3) |
|
|
251 | (1) |
|
The Accuracy of Fixated Measurements |
|
|
252 | (2) |
|
Localisation and Map-Building |
|
|
254 | (5) |
|
|
254 | (5) |
|
Continuous Feature Tracking |
|
|
259 | (2) |
|
A Fixation Strategy for Localisation |
|
|
261 | (5) |
|
Choosing from Known Features |
|
|
262 | (1) |
|
|
263 | (3) |
|
Steering Control and Context-Based Navigation |
|
|
266 | (3) |
|
Steering a Twisting Course |
|
|
266 | (3) |
|
|
269 | (2) |
|
Strategies for Active Sensor Management |
|
|
271 | (20) |
|
|
271 | (4) |
|
Simple Signal Processing Tools |
|
|
275 | (3) |
|
Reconfigurable Sensors and Signal Processing Tools |
|
|
278 | (4) |
|
A Sensor-Centred Image Segmentation Algorithm |
|
|
282 | (2) |
|
Signal Processing Tool Selection Strategies |
|
|
284 | (3) |
|
Dynamic Signal Processing Tool Scheduling |
|
|
287 | (2) |
|
|
289 | (2) |
Bibliography |
|
291 | (16) |
Appendix A: Contact Details of Authors |
|
307 | (4) |
Index |
|
311 | |