Muutke küpsiste eelistusi

E-raamat: Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications, Second Edition

(Manipal Institute of Technology, India), (Sapthagiri College of Engineering, Bangalore, India), (Jadavpur University, Kolkata, India)
  • Formaat: 349 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466514478
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 349 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466514478

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Communication between various devices makes it possible to provide unique and innovative services. Although this inter-device communication is a very powerful mechanism, it is also a complex and clumsy mechanism, leading to a lot of complexity in the present day systems. This not only makes networking difficult but limits its flexibility as well. Many standards exist today for connecting various devices. At the same time, every device has to support more than one standard to make it inter-operable between different devices. Take the example of setting up a network in offices. Right now, entire office buildings have to make provisions for lengths of cable that stretch kilometers through conduits in the walls, floors and ceilings to workers' desks. In thelast few years, many wireless connectivity standards and technologies have emerged. These technologies enable users to connect a wide range of computing and telecommunications devices easily and simply, without the need to buy, carry, or connect cables. These technologies deliver opportunities for rapid ad hoc connections, and the possibility of automatic, unconscious, connections between devices. They will virtually eliminate the need to purchase additional or proprietary cabling to connect individual devices, thus creating the possibility of using mobile data in a variety of applications. Wired local area networks (LANs) have been very successful in the last few years and now with the help of these wireless connectivity technologies, wireless LANs (WLANs) have started emerging as a much more powerful and flexible alternatives to the wired LANs"--

The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems.

Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of service and energy management systems. Additional chapters cover mobility models for multi-hop ad hoc wireless networks as well as cross-layer design issues.

Exploring Bluetooth, IrDA (Infrared Data Association), HomeRF, WiFi, WiMax, Wireless Internet, and Mobile IP, the book contains appropriate examples and problems at the end of each chapter to illustrate each concept. This second edition has been completely updated with the latest technology and includes a new chapter on recent developments in the field, including sensor networks, personal area networks (PANs), smart dress, and vehicular ad hoc networks.

Self-organized, self-configured, and self-controlled, ad hoc mobile wireless networks will continue to be valued for a range of applications, as they can be set up and deployed anywhere and anytime. This volume captures the current state of the field as well as upcoming challenges awaiting researchers.

Chapter 1 Introduction
1(50)
1.1 Fundamentals of Wireless Networks
1(11)
1.1.1 Bluetooth
2(1)
1.1.2 IrDA
3(1)
1.1.2.1 Comparison of Bluetooth and IrDA
4(1)
1.1.3 HomeRF
5(1)
1.1.3.1 Comparison of Bluetooth with Shared Wireless Access Protocol (SWAP)
6(2)
1.1.4 IEE 802.11 (WiFi)
8(1)
1.1.5 IEE 802.16 (WiMAX)
9(1)
1.1.6 Hotspots
9(1)
1.1.6.1 Requirements to Use Wi-Fi Hotspots
10(1)
1.1.6.2 Finding Wi-Fi Hotspots
10(1)
1.1.6.3 Connection to Wi-Fi Hotspots
10(1)
1.1.6.4 Dangers of Wi-Fi Hotspots
11(1)
1.1.7 Mesh Networking
11(1)
1.1.7.1 Limitation of Wireless Technology
12(1)
1.2 Wireless Internet
12(16)
1.2.1 IP Limitations
14(1)
1.2.2 Mobile Internet Protocol (IP)
15(1)
1.2.2.1 Working of Mobile IP
16(5)
1.2.3 Discovering the Care-of Address
21(1)
1.2.4 Registering the Care-of Address
22(1)
1.2.5 Authentication
22(2)
1.2.6 Automatic Home Agent Discovery
24(1)
1.2.7 Tunneling to the Care-of Address
24(1)
1.2.8 Issues in Mobile IP
25(1)
1.2.8.1 Routing Inefficiencies
25(1)
1.2.8.2 Security Issues
26(1)
1.2.8.3 Ingress Filtering
26(1)
1.2.8.4 User Perceptions of Reliability
26(1)
1.2.8.5 Issues in IP Addressing
27(1)
1.2.8.6 Slow Growth in the Wireless Local Area Network (WLAN) Market
27(1)
1.2.8.7 Competition from Other Protocols
28(1)
1.3 What Are Ad Hoc Networks?
28(23)
1.3.1 Difference between Cellular and Ad Hoc Wireless Networks
30(1)
1.3.2 Applications of Ad Hoc Wireless Networks
30(2)
1.3.3 Technical and Research Challenges
32(1)
1.3.3.1 Security Issues and Challenges
33(2)
1.3.3.2 Different Types of Attacks on Multicast Routing Protocols
35(1)
1.3.3.3 Interconnection of Mobile Ad Hoc Networks and the Internet
36(1)
1.3.4 Issues in Ad Hoc Wireless Networks
36(1)
1.3.4.1 Medium Access Control (MAC) Protocol Research Issues
37(1)
1.3.4.2 Networking Issues
37(1)
1.3.4.3 Ad Hoc Routing and Forwarding
38(1)
1.3.4.4 Unicast Routing
38(3)
1.3.4.5 Location-Aware Routing
41(1)
1.3.4.6 Transmission Control Protocol (TCP) Issues
42(1)
1.3.4.7 Network Security
42(1)
1.3.4.8 Different Security Attacks
43(2)
1.3.4.9 Security at Data-Link Layer
45(1)
1.3.4.10 Secure Routing
46(1)
1.3.4.11 Quality of Service (QoS)
46(3)
1.3.4.12 Simulation of Wireless Ad Hoc Networks
49(1)
Bibliography
50(1)
Chapter 2 MAC Layer Protocols
51(30)
2.1 Introduction
51(1)
2.2 Important Issues and Need for Medium Access Control (MAC) Protocols
52(3)
2.2.1 Need for Special MAC Protocols
54(1)
2.3 Classification of MAC Protocols
55(21)
2.3.1 Contention-Based MAC Protocols
56(1)
2.3.2 Contention-Based MAC Protocols with Reservation Mechanisms
57(1)
2.3.2.1 Multiple Access Collision Avoidance (MACA)
58(3)
2.3.2.2 IEEE 802.11 MAC Scheme
61(1)
2.3.2.3 Multiple Access Collision Avoidance by Invitation (MACA-BI)
62(1)
2.3.2.4 Group Allocation Multiple Access with Packet Sensing (GAMA-PS)
63(1)
2.3.3 MAC Protocols Using Directional Antennas
64(2)
2.3.4 Multiple-Channel MAC Protocols
66(1)
2.3.4.1 Dual Busy Tone Multiple Access (DBTMA)
67(1)
2.3.4.2 Multichannel Carrier Sense Multiple Access (CSMA) MAC Protocol
68(1)
2.3.4.3 Hop-Reservation Multiple Access (HRMA)
68(1)
2.3.4.4 Multichannel Medium Access Control (MMAC)
69(1)
2.3.4.5 Dynamic Channel Assignment with Power Control (DCA-PC)
70(1)
2.3.5 Power-Aware or Energy-Efficient MAC Protocols
71(1)
2.3.5.1 Power-Aware Medium Access Control with Signaling (PAMAS)
72(1)
2.3.5.2 Dynamic Power-Saving Mechanism (DPSM)
72(1)
2.3.5.3 Power-Control Medium Access Control (PCM)
73(2)
2.3.5.4 Power-Controlled Multiple Access (PCMA)
75(1)
2.4 Summary
76(5)
Reference
77(1)
Bibliography
77(4)
Chapter 3 Routing Protocols
81(48)
3.1 Introduction
81(2)
3.2 Design Issues of Routing Protocols for Ad Hoc Networks
83(3)
3.2.1 Routing Architecture
83(1)
3.2.2 Unidirectional Links Support
84(1)
3.2.3 Usage of Superhosts
84(1)
3.2.4 Quality of Service (QoS) Routing
85(1)
3.2.5 Multicast Support
86(1)
3.3 Classification of Routing Protocols
86(5)
3.3.1 Proactive, Reactive, and Hybrid Routing
87(2)
3.3.2 Structuring and Delegating the Routing Task
89(1)
3.3.3 Exploiting Network Metrics for Routing
90(1)
3.3.4 Evaluating Topology, Destination, and Location for Routing
90(1)
3.4 Proactive Routing Protocols
91(25)
3.4.1 Wireless Routing Protocol (WRP)
92(1)
3.4.1.1 Overview
93(1)
3.4.1.2 Information Maintained at Each Node
94(1)
3.4.1.3 Information Exchanged among Nodes
95(1)
3.4.1.4 Routing-Table Updating
96(1)
3.4.2 Destination-Sequence Distance Vector (DSDV)
96(2)
3.4.3 Fisheye State Routing (FSR)
98(3)
3.4.4 Ad Hoc On-Demand Distance Vector (AODV)
101(1)
3.4.4.1 Path Discovery
101(1)
3.4.4.2 Reverse Path Setup
102(1)
3.4.4.3 Forward Path Setup
103(1)
3.4.4.4 Route Table Management
104(1)
3.4.4.5 Path Maintenance
105(1)
3.4.4.6 Local Connectivity Management
106(1)
3.4.5 Dynamic Source Routing (DSR) Protocol
106(1)
3.4.5.1 Overview and Important Properties of the Protocol
107(1)
3.4.5.2 Basic DSR Route Discovery
107(3)
3.4.5.3 Basic DSR Route Maintenance
110(1)
3.4.6 Temporally Ordered Routing Algorithm (TORA)
111(1)
3.4.7 Cluster-Based Routing Protocol (CBRP)
112(1)
3.4.8 Location-Aided Routing (LAR)
113(1)
3.4.8.1 Route Discovery Using Flooding
113(2)
3.4.9 Ant-Colony-Based Routing Algorithm (ARA)
115(1)
3.4.9.1 Basic Ant Algorithm
115(1)
3.5 Hybrid Routing Protocols
116(7)
3.5.1 Zone Routing Protocol (ZRP)
116(1)
3.5.1.1 Motivation
116(1)
3.5.1.2 Architecture
117(2)
3.5.1.3 Routing
119(1)
3.5.1.4 Route Maintenance
120(1)
3.5.2 Zone-Based Hierarchical Link State (ZHLS)
120(1)
3.5.2.1 Zone Map
121(1)
3.5.2.2 Hierarchical Structure of ZHLS
121(1)
3.5.3 Distributed Dynamic Routing (DDR) Protocol
122(1)
3.6 Summary
123(6)
Bibliography
126(3)
Chapter 4 Multicast Routing Protocols
129(32)
4.1 Introduction
129(1)
4.2 Issues in Design of Multicast Routing Protocols
130(2)
4.3 Classification of Multicast Routing Protocols
132(20)
4.3.1 Tree-Based Multicast Routing Protocols
132(1)
4.3.1.1 Source Tree-Based Multicast Protocols
132(1)
4.3.1.2 Minimum Hop-Based Multicast Protocols
132(2)
4.3.1.3 Minimum Link-Based Multicast Protocols
134(3)
4.3.1.4 Stability-Based Multicast Protocols
137(2)
4.3.1.5 Multicast Zone-Based Routing Protocol (MZRP)
139(3)
4.3.1.6 Shared Tree-Based Multicast Protocols
142(1)
4.3.1.7 Session-Specific Ad Hoc Multicast Routing Protocol Utilizing Increasing ID Numbers (AMRIS)
143(1)
4.3.2 Mesh-Based Multicast Routing Protocols
144(1)
4.3.2.1 Source-Initiated Mesh-Based Multicast Protocols
144(2)
4.3.2.2 Receiver-Initiated Mesh-Based Multicast Protocols
146(1)
4.3.3 Source-Based Multicast Routing Protocol
147(1)
4.3.3.1 FG Node Selection
147(2)
4.3.3.2 Operation
149(3)
4.4 QoS Routing
152(1)
4.4.1 Multicast Routing in QoS
153(1)
4.5 Energy-Efficient Multicast Routing Protocols
153(2)
4.5.1 Metrics for Energy-Efficient Multicast
153(1)
4.5.2 EEMRP: Energy-Efficient Multicast Routing Protocol
154(1)
4.6 Location-Based Multicast Routing Protocols
155(2)
4.6.1 Preliminaries
156(1)
4.7 Summary
157(4)
Reference
158(1)
Bibliography
158(3)
Chapter 5 Transport Protocols
161(24)
5.1 Introduction
161(1)
5.2 TCP's Challenges and Design Issues in Ad Hoc Networks
162(7)
5.2.1 Challenges
162(1)
5.2.1.1 Excessive Contention and Unfair Access at MAC Layer
163(5)
5.2.2 Design Goals
168(1)
5.3 TCP Performance over MANETs
169(3)
5.3.1 TCP Performance
169(2)
5.3.2 Other Problems
171(1)
5.3.2.1 State Route Problem
171(1)
5.3.2.2 MAC Layer Rate Adaptation Problem
172(1)
5.4 Ad Hoc Transport Protocols
172(10)
5.4.1 Split Approaches
172(2)
5.4.2 End-to-End Approach
174(1)
5.4.2.1 TCP Feedback (TCP-F)
175(1)
5.4.2.2 TCP-ELFN
176(1)
5.4.2.3 Ad Hoc-TCP
177(2)
5.4.2.4 TCP-Buffering Capability and Sequencing Information (TCP-BUS)
179(3)
5.5 Summary
182(3)
References
183(1)
Bibliography
183(2)
Chapter 6 Quality of Service
185(22)
6.1 Introduction
185(1)
6.2 Challenges
185(4)
6.2.1 Hard-State versus Soft-State Resource Reservation
187(1)
6.2.2 Stateful versus Stateless Approach
188(1)
6.2.3 Hard QoS versus Soft QoS Approach
188(1)
6.3 Classification of QoS Solutions
189(2)
6.3.1 MAC Layer Solutions
189(1)
6.3.1.1 Cluster TDMA
189(2)
6.3.2 Network Layer Solutions
191(1)
6.4 QoS-Enabled Ad Hoc On-Demand Distance Vector Routing Protocol
191(2)
6.4.1 QoS Extensions to AODV Protocol
191(1)
6.4.1.1 Maximum Delay Extension Field
192(1)
6.4.1.2 Minimum Bandwidth Extension Field
192(1)
6.4.2 Advantages and Disadvantages
192(1)
6.5 QoS Frameworks for Ad Hoc Wireless Networks
193(3)
6.5.1 QoS Models
194(1)
6.5.1.1 Flexible QoS Model for Mobile Ad Hoc Networks
195(1)
6.6 INSIGNIA
196(4)
6.6.1 Operation of INSIGNIA Framework
198(2)
6.6.2 Advantages and Disadvantages
200(1)
6.7 INORA
200(3)
6.7.1 Coarse Feedback Scheme
201(1)
6.7.2 Class-Based Fine Feedback Scheme
201(1)
6.7.3 Advantages
202(1)
6.8 Summary
203(4)
References
204(1)
Bibliography
204(3)
Chapter 7 Energy Management Systems
207(48)
7.1 Introduction
207(19)
7.1.1 Why Energy Management Is Needed in Ad Hoc Networks
207(1)
7.1.2 Classification of Energy Management Schemes
208(2)
7.1.3 Overview of Battery Technologies
210(1)
7.1.4 Principles of Battery Discharge
211(1)
7.1.4.1 Depth of Discharge
211(1)
7.1.5 Impact of Discharge Characteristics on Battery Capacity
212(1)
7.1.5.1 Temperature Characteristics
212(1)
7.1.5.2 Self-Discharge Characteristics
213(2)
7.1.5.3 Effects of Internal Impedance
215(2)
7.1.5.4 Discharge Rates
217(1)
7.1.5.5 Battery Load
218(1)
7.1.5.6 Duty Cycle
218(1)
7.1.6 Battery Modeling
219(2)
7.1.7 Battery-Driven System Design
221(2)
7.1.7.1 Stochastic Model
223(1)
7.1.8 Smart Battery System
224(2)
7.2 Energy-Efficient Routing Protocol
226(3)
7.2.1 Proposed Energy-Efficient Medium Access Control Protocol
227(1)
7.2.1.1 Design Criteria
227(1)
7.2.1.2 Features of EE-MAC
228(1)
7.2.1.3 Performance
229(1)
7.3 Transmission Power-Management Schemes
229(11)
7.3.1 Power Management of Ad Hoc Networks
230(1)
7.3.2 Basic Idea of the Power Cost Calculate Balance (PCCB) Routing Protocol
231(1)
7.3.2.1 Routing Process of the PCCB Routing Protocol
232(3)
7.3.3 Analysis of the PCCB Routing Protocol
235(1)
7.3.4 MAC Protocol
235(1)
7.3.5 Power Saving
236(1)
7.3.6 Timing Synchronization Function
237(1)
7.3.7 Power-Saving Function
237(2)
7.3.8 Power-Saving Potential
239(1)
7.4 Transmission Power Control
240(6)
7.4.1 Adapting Transmission Power to the Channel State
241(1)
7.4.2 MAC Techniques
242(2)
7.4.3 Logical Link Control
244(2)
7.5 AODV Protocol
246(1)
7.5.1 Introduction
246(1)
7.5.2 Route Discovery
246(1)
7.5.3 Route Maintenance
247(1)
7.6 Local Energy-Aware Routing Based on AODV (LEAR-AODV)
247(1)
7.6.1 Introduction
247(1)
7.6.2 Route Discovery
247(1)
7.6.3 Route Maintenance
248(1)
7.7 Power-Aware Routing Based on AODV (PAR-AODV)
248(1)
7.7.1 Introduction
248(1)
7.7.2 Route Discovery
249(1)
7.7.3 Route Maintenance
249(1)
7.8 Lifetime Prediction Routing Based on AODV (LPR-AODV)
249(6)
7.8.1 Introduction
249(1)
7.8.2 Route Discovery
250(1)
7.8.3 Route Maintenance
250(2)
References
252(3)
Chapter 8 Mobility Models for Multihop Wireless Networks
255(20)
8.1 Introduction
255(1)
8.2 Mobility Models
255(10)
8.2.1 Random Walk Mobility Model
257(1)
8.2.2 Random Waypoint
258(2)
8.2.3 The Random Direction Mobility Model
260(1)
8.2.4 A Boundless Simulation Area
261(1)
8.2.5 Gauss-Markov
261(2)
8.2.6 A Probabilistic Version of Random Walk
263(1)
8.2.7 City Section Mobility Model
264(1)
8.3 Limitations of the Random Waypoint Model and Other Random Models
265(4)
8.3.1 Mobility Models with Temporal Dependency
266(1)
8.3.2 Mobility Models with Spatial Dependency
266(1)
8.3.3 Mobility Models with Geographic Restriction
267(1)
8.3.3.1 Pathway Mobility Model
267(1)
8.3.3.2 Obstacle Mobility Model
268(1)
8.3.3.3 Group Mobility Models
269(1)
8.4 Summary
269(6)
References
271(1)
Bibliography
271(4)
Chapter 9 Cross-Layer Design Issues
275(18)
9.1 Introduction
275(1)
9.2 A Definition of Cross-Layer Design
275(1)
9.3 Cross-Layer Design Principle
276(2)
9.3.1 General Motivations for Cross-Layer Design
277(1)
9.4 Proposals Involving Cross-Layer Design
278(3)
9.4.1 Creation of New Communication Interfaces
278(1)
9.4.1.1 Upward Information Flow
279(1)
9.4.1.2 Downward Information Flow
280(1)
9.4.1.3 Back and Forth Information Flow
280(1)
9.4.2 Merging of Adjacent Layers
280(1)
9.4.2.1 Design Coupling without New Interfaces
280(1)
9.4.2.2 Vertical Calibration across Layers
280(1)
9.5 Proposals for Implementing Cross-Layer Interactions
281(1)
9.5.1 Direct Communication between Layers
281(1)
9.5.2 A Shared Database across Layers
281(1)
9.5.3 Completely New Abstractions
282(1)
9.6 Cross-Layer Design: Is It Worth Applying It?
282(1)
9.6.1 The von Neumann Architecture
282(1)
9.6.2 Source-Channel Separation and Digital System Architecture
283(1)
9.6.3 The OSI Architecture for Networking
283(1)
9.7 Pitfalls of the Cross-Layer Design Approach
283(2)
9.7.1 Cost of Development
283(1)
9.7.2 Performance versus Longevity
284(1)
9.7.3 Interaction and Unintended Consequences
284(1)
9.7.4 Stability
285(1)
9.8 Performance Objectives
285(2)
9.8.1 Maximizing Total Capacity
286(1)
9.8.2 Max-Min Fairness
286(1)
9.8.3 Utility Fairness
287(1)
9.9 Cross-Layer Protocols
287(6)
Bibliography
290(3)
Chapter 10 Applications and Recent Developments
293(16)
10.1 Introduction
293(2)
10.2 Typical Applications
295(2)
10.2.1 PAN
296(1)
10.3 Applications and Opportunities
297(5)
10.3.1 Academic Environment Applications
297(1)
10.3.2 Defense Applications
298(1)
10.3.3 Industrial Environment Applications
299(1)
10.3.4 Healthcare Applications
300(1)
10.3.5 Search and Rescue Applications
301(1)
10.3.6 Vehicular Ad Hoc Networks
301(1)
10.4 Challenges
302(4)
10.4.1 Security
304(2)
10.5 Highlights of the Most Recent Developments in the Field
306(1)
10.5.1 Sensors
307(1)
10.5.2 Wireless Ad Hoc Sensor Networks
307(1)
10.6 Summary
307(2)
Bibliography
308(1)
Index 309
Subir Kumar Sarkar is with Jadavpur University in Kolkata, India.

T.G. Basavaraju is with Sapthagiri College of Engineering in Bangalore, India.

C. Puttamadappa is with Manipal Institute of Technology, India.