Part I Homogeneous Partitioning of the Surveillance Volume |
|
|
|
3 | (2) |
|
|
|
Chapter 2 A New Approach to Radar Detection Based on the Partitioning and Statistical Characterization of the Surveillance Volume |
|
|
5 | (170) |
|
|
|
|
7 | (1) |
|
2.1. Radar Detection with a Priori Statistical Knowledge of the Environment |
|
|
8 | (5) |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
10 | (1) |
|
2.1.2.2. Properties of SIRVs |
|
|
11 | (1) |
|
2.1.3. Locally Optimum Detector |
|
|
12 | (1) |
|
2.2. Understanding of Signal and Detection Using a Feedforward Expert System |
|
|
13 | (7) |
|
|
13 | (1) |
|
2.2.2. Classification of the Test Cells |
|
|
14 | (1) |
|
2.2.2.1. Mapping of the Space |
|
|
14 | (1) |
|
2.2.2.2. Indexing of the Cells |
|
|
15 | (1) |
|
|
16 | (4) |
|
2.3 Signal Understanding and Detection Using a Feedback Expert System |
|
|
20 | (9) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.3.2.2. Discrepancy Detection |
|
|
24 | (1) |
|
2.3.2.3. Diagnosis and Reprocessing |
|
|
25 | (1) |
|
2.3.2.4. Interpretation Process |
|
|
26 | (1) |
|
2.3.2.5. SOU and Resolving Control Structure |
|
|
26 | (3) |
|
2.3.3. Application of IPUS to Radar Signal Understanding |
|
|
29 | (1) |
|
2.4. Proposed Radar Signal Processing System Using a Feedback Expert System |
|
|
29 | (7) |
|
2.4.1. Data Collection and Preprocessing |
|
|
29 | (3) |
|
|
32 | (4) |
|
|
36 | (46) |
|
|
36 | (1) |
|
2.5.2. Observations on BN and CL Cells |
|
|
37 | (1) |
|
2.5.2.1. Observations on BN Cells |
|
|
37 | (1) |
|
2.5.2.2. Observations on CL Cells |
|
|
38 | (1) |
|
|
39 | (1) |
|
2.5.3.1. Separation of CL Patches from Background Noise |
|
|
39 | (1) |
|
2.5.3.2. Detection of CL Patch Edges and Edge Enhancement |
|
|
44 | (1) |
|
|
46 | (1) |
|
2.5.4. Examples of the Mapping Procedure |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
49 | (21) |
|
2.5.5. Convergence of the Mapping Procedure |
|
|
70 | (1) |
|
|
70 | (1) |
|
2.5.5.2. Separation between BN and CL Patches |
|
|
73 | (6) |
|
2.5.6. Extension of the Mapping Procedure to Range – Azimuth – Doppler Cells |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
82 | (32) |
|
|
82 | (1) |
|
|
83 | (1) |
|
2.6.2.1. Identification of the BN and CL Patches |
|
|
83 | (1) |
|
2.6.2.2. Computation of CL-to-Noise Ratios |
|
|
85 | (1) |
|
2.6.2.3. Classification of CL Patches |
|
|
85 | (1) |
|
2.6.3. CL Subpatch Investigation Stage |
|
|
86 | (1) |
|
2.6.4. PDF Approximation of WSC CL Patches |
|
|
87 | (1) |
|
2.6.4.1. Test Cell Selection |
|
|
88 | (1) |
|
2.6.4.2. PDF Approximation |
|
|
89 | (1) |
|
2.6.4.3. PDF Approximation Metric |
|
|
91 | (1) |
|
|
93 | (1) |
|
2.6.4.5. PDF Approximation Strategy |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
104 | (1) |
|
|
106 | (5) |
|
2.6.6. Extension of the Indexing Procedure to Range—Azimuth—Doppler Cells |
|
|
111 | (2) |
|
|
113 | (1) |
|
2.7. Application of IPUS to the Radar Detection Problem |
|
|
114 | (58) |
|
2.7.1. Summary of IPUS Concepts |
|
|
114 | (1) |
|
2.7.2. Role of IPUS in the Mapping Procedure |
|
|
115 | (1) |
|
2.7.2.1. IPUS Stages Included in the Mapping Procedure |
|
|
115 | (1) |
|
2.7.2.2. Observations on the Setting of NCC |
|
|
117 | (8) |
|
2.7.3. Examples of Mapping |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
2.7.4. Role of IPUS in the Indexing Procedure |
|
|
126 | (1) |
|
2.7.4.1. IPUS Stages Included in the Assessment Stage |
|
|
127 | (1) |
|
2.7.4.2. IPUS Stages Included in the CL Subpatch Investigation Stage |
|
|
127 | (1) |
|
|
131 | (1) |
|
2.7.4.4. IPUS Stages Included in the PDF Approximation Stage |
|
|
133 | (14) |
|
2.7.5. Examples of Indexing |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
152 | (1) |
|
|
163 | (7) |
|
|
170 | (2) |
|
2.8. Conclusion and Future Research |
|
|
172 | (4) |
|
|
172 | (1) |
|
|
173 | (2) |
|
Chapter 3 Statistical Analysis of the Nonhomogeneity Detector (for Excluding Nonhomogeneous Samples from a Subdivision) |
|
|
175 | (30) |
|
M. Rangaswamy, J.H. Michels, and B. Himed |
|
|
|
3.1. Gaussian Interference Backgrounds |
|
|
176 | (11) |
|
M. Rangaswamy, J. H. Michels, and B. Himed |
|
|
|
|
176 | (1) |
|
3.1.2. Generalized Inner Product Statistics: Known Covariance Matrix |
|
|
177 | (1) |
|
3.1.3. Generalized Inner Product Statistics: Unknown Covariance Matrix |
|
|
178 | (1) |
|
3.1.4. Nonhomogeneity Detector |
|
|
181 | (1) |
|
3.1.5. Performance Analysis of the Adaptive Matched Filter Test |
|
|
183 | (1) |
|
|
187 | (1) |
|
3.2. NonGaussian Interference Backgrounds |
|
|
187 | (19) |
|
|
|
|
187 | (1) |
|
|
189 | (1) |
|
3.2.3. Nonhomogeneity Detector for NonGaussian Interference Scenarios |
|
|
190 | (1) |
|
3.2.3.1. Covariance Matrix Estimation |
|
|
190 | (1) |
|
3.2.3.2. Maximally Invariant NHD Test Statistic |
|
|
191 | (1) |
|
3.2.3.3. PDF and Moments of the NonGaussian NHD Test Statistic |
|
|
192 | (1) |
|
3.2.3.4. Goodness-of-Fit Test |
|
|
193 | (1) |
|
3.2.4. Performance Analysis |
|
|
194 | (1) |
|
|
204 | (1) |
|
Chapter 4 A New Technique for Univariate Distribution Approximation of Random Data |
|
|
205 | (54) |
|
|
|
|
206 | (15) |
|
|
206 | (1) |
|
4.1.2. The Kolmogorov–Smirnov Test |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
209 | (1) |
|
4.1.3. The Chi-Square Test |
|
|
210 | (1) |
|
|
214 | (1) |
|
4.1.4. Quantile–Quantile Plot |
|
|
215 | (1) |
|
|
216 | (2) |
|
4.1.5. Probability –Probability Plot |
|
|
218 | (1) |
|
|
219 | (2) |
|
4.2. The Ozturk Algorithm |
|
|
221 | (27) |
|
|
221 | (1) |
|
|
222 | (1) |
|
4.2.3. The Ozturk Algorithm |
|
|
223 | (1) |
|
4.2.3.1. Goodness of Fit Test |
|
|
223 | (1) |
|
4.2.3.2. Distribution Approximation |
|
|
239 | (1) |
|
4.2.3.3. Parameter Estimation |
|
|
245 | (3) |
|
4.3. Simulation Results of the Ozturk Algorithm |
|
|
248 | (7) |
|
4.3.1. Goodness of Fit Test Results |
|
|
249 | (1) |
|
4.3.1.1. The Univariate Gaussian Case |
|
|
249 | (1) |
|
4.3.1.2. The Weibull Case |
|
|
249 | (1) |
|
|
250 | (1) |
|
4.3.1.4. The Lognormal Case |
|
|
250 | (2) |
|
4.3.2. Distribution Approximation Test Results |
|
|
252 | (3) |
|
4.4. Conclusions and Suggestions for Future Work |
|
|
255 | (5) |
|
|
255 | (1) |
|
4.4.2. Suggestions for Future Work |
|
|
256 | (3) |
|
Chapter 5 Probability Density Distribution Approximation and Goodness-of-Fit Tests of Random Data |
|
|
259 | (36) |
|
|
|
5.1. A New Method for Distribution Approximation |
|
|
260 | (16) |
|
|
260 | (1) |
|
5.1.2. Approximation Procedure |
|
|
261 | (2) |
|
5.1.3. Performance of the Approximation Procedure |
|
|
263 | (1) |
|
5.1.4. Approximation of Multivariate Distributions |
|
|
264 | (4) |
|
5.1.5. Parameter Estimation |
|
|
268 | (1) |
|
5.1.5.1. Estimating the Location and Scale Parameters |
|
|
268 | (1) |
|
5.1.5.2. Estimating the Shape Parameters |
|
|
270 | (2) |
|
5.1.6. Distribution Approximation for Mixtures of Distributions |
|
|
272 | (1) |
|
|
273 | (2) |
|
|
275 | (1) |
|
5.2. A General Algorithm for Univariate and Multivariate Goodness-of-Fit Tests Based on Graphical Representation |
|
|
276 | (21) |
|
|
276 | (1) |
|
5.2.2. The Test Procedure |
|
|
277 | (2) |
|
5.2.3. Properties of the Test Statistics |
|
|
279 | (3) |
|
5.2.4. Extensions of the Test |
|
|
282 | (1) |
|
|
283 | (3) |
|
|
286 | (4) |
|
5.2.7. The Test Algorithm |
|
|
290 | (2) |
|
|
292 | (3) |
|
|
295 | (124) |
|
W.J. Baldygo, C.T. Capraro, G.T. Capraro, D. Ferris, I.D. Keckler, M.A. Slamani, D.L. Stadelman, V. Vannicola, D.D. Weiner, W.W. Weiner, and M.C. Wicks |
|
|
|
6.1. The Ozturk Algorithm: A New Technique for Analyzing Random Data with Applications to the Field of Neuroscience |
|
|
297 | (52) |
|
|
|
6.1.1. Introduction to the Ozturk Algorithm |
|
|
297 | (1) |
|
|
298 | (1) |
|
6.1.1.2. Sample Simulation |
|
|
299 | (7) |
|
6.1.2. Detailed Description of the Ozturk Algorithm |
|
|
306 | (1) |
|
6.1.2.1. The Standardized Order Statistic |
|
|
306 | (1) |
|
6.1.2.2. The Goodness-of-Fit Test |
|
|
307 | (1) |
|
6.1.2.3. Calculation of Linked Vectors in the U-V Plane |
|
|
308 | (1) |
|
6.1.2.4. Calculation of Confidence Ellipses |
|
|
311 | (1) |
|
6.1.2.5. The Best-Fit Test |
|
|
312 | (1) |
|
6.1.2.6. Estimation of Location and Scale Parameters |
|
|
314 | (2) |
|
6.1.3. Analysis of Spontaneous Auditory Nerve Activity of Chinchillas |
|
|
316 | (1) |
|
6.1.3.1. Analysis of Two Fibers with Different Spontaneous Rates |
|
|
325 | (1) |
|
6.1.3.2. Analysis of Pulse-Number Distributions |
|
|
327 | (6) |
|
6.1.4. Analysis of Efferent Optic-Nerve Activity in the Horseshoe Crab |
|
|
333 | (1) |
|
6.1.4.1. Characterization of Interburst Intervals |
|
|
335 | (1) |
|
6.1.4.2. Trends in the Shape Parameter |
|
|
339 | (2) |
|
6.1.5. Analysis of the Visual Field of the Horseshoe Crab |
|
|
341 | (1) |
|
6.1.5.1. Total Interommatidial Angles |
|
|
344 | (1) |
|
6.1.5.2. Horizontal and Vertical Interommatidial Angles |
|
|
346 | (2) |
|
6.1.6. Applications of the Ozturk Algorithm in Neuroscience |
|
|
348 | (1) |
|
6.2. Use of Image Processing to Partition a Radar Surveillance Volume into Background Noise and Clutter Patches |
|
|
349 | (10) |
|
M.A. Slamani and D.D. Weiner |
|
|
|
|
349 | (1) |
|
6.2.2. Observations about BN and CL |
|
|
350 | (1) |
|
6.2.2.1. Observations about BN |
|
|
351 | (1) |
|
6.2.2.2. Observations about CL |
|
|
351 | (1) |
|
|
351 | (1) |
|
6.2.3.1. Separation of CL Patches from BN |
|
|
351 | (1) |
|
6.2.3.2. Detection of Clutter Patch Edges |
|
|
354 | (1) |
|
6.2.3.3. Enhancement of Clutter Patch Edges |
|
|
355 | (1) |
|
|
355 | (4) |
|
6.3. Probabilistic Insight into the Application of Image Processing to the Mapping of Clutter and Noise Regions in a Radar Surveillance Volume |
|
|
359 | (9) |
|
M.A. Slamani and D.D. Weiner |
|
|
|
|
359 | (1) |
|
6.3.2. Separation between BN and CL Patches |
|
|
360 | (1) |
|
|
368 | (1) |
|
6.4. A New Approach to the Analysis of IR Images |
|
|
368 | (14) |
|
M.A. Slamani, D. Ferris, and V. Vannicola |
|
|
|
|
368 | (1) |
|
|
369 | (1) |
|
|
371 | (1) |
|
6.4.3.1. Identification of Lowest Average Power Level (LP) |
|
|
371 | (1) |
|
6.4.3.2. Detection of Patch Edges |
|
|
371 | (1) |
|
6.4.4. Statistical Procedure |
|
|
372 | (1) |
|
6.4.4.1. Introduction to Ozturk Algorithm |
|
|
372 | (1) |
|
|
374 | (1) |
|
6.4.4.3. Strategy to SubPatch Investigation Using the Statistical Procedure |
|
|
374 | (1) |
|
6.4.5. Expert System Shell IPUS |
|
|
375 | (1) |
|
6.4.6. Example: Application of ASCAPE to Real IR Data |
|
|
376 | (1) |
|
|
381 | (1) |
|
6.5. Automatic Statistical Characterization and Partitioning of Environments (ASCAPE) |
|
|
382 | (4) |
|
M.A. Slamani, D.D. Weiner, and V. Vannicola |
|
|
|
|
382 | (1) |
|
|
385 | (1) |
|
6.5.3. Application of ASCAPE to Real IR Data |
|
|
385 | (1) |
|
|
386 | (1) |
|
6.6. Statistical Characterization of Nonhomogeneous and Nonstationary Backgrounds |
|
|
386 | (14) |
|
A.D. Keckler, D.L. Stadelman, D.D. Weiner, and M.A. Slamani |
|
|
|
|
386 | (1) |
|
6.6.2. Application of ASCAPE to Concealed Weapon Detection |
|
|
387 | (1) |
|
6.6.3. The SIRV Radar Clutter Model |
|
|
390 | (1) |
|
6.6.4. Distribution Approximation Using the Ozturk Algorithm |
|
|
392 | (1) |
|
6.6.5. Approximation of SIRVs |
|
|
395 | (1) |
|
6.6.6. NonGaussian Receiver Performance |
|
|
398 | (1) |
|
6.6.7. Concluding Remarks |
|
|
400 | (1) |
|
6.7. Knowledge-Based Map Space Time Adaptive Processing (KBMapSTAP) |
|
|
400 | (8) |
|
C.T. Capraro, G.T. Capraro, D.D. Weiner, and M.C. Wicks |
|
|
|
|
400 | (1) |
|
|
401 | (1) |
|
6.7.3. Representative Secondary Clutter |
|
|
402 | (1) |
|
6.7.4. Airborne Radar Data |
|
|
402 | (1) |
|
|
403 | (1) |
|
6.7.6. Research Problem, Hypothesis, and Preliminary Findings |
|
|
403 | (1) |
|
6.7.7. Conclusions and Future Work |
|
|
407 | (1) |
|
6.8. Improved STAP Performance Using Knowledge-Aided Secondary Data Selection |
|
|
408 | (13) |
|
C.T. Capraro, G.T. Capraro, D.D. Weiner, M.C. Wicks, and W.J. Baldygo |
|
|
|
|
408 | (1) |
|
6.8.2. Radar and Terrain Data |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
410 | (1) |
|
6.8.3.2. Registration of the Radar with the Earth |
|
|
411 | (1) |
|
|
412 | (1) |
|
6.8.3.4. Corrections for Visibility |
|
|
412 | (1) |
|
6.8.3.5. Secondary Data Guard Cells |
|
|
413 | (1) |
|
|
413 | (1) |
|
|
415 | (4) |
Part II Adaptive Antennas |
|
|
|
419 | (2) |
|
|
|
Chapter 8 Adaptive Implementation of Optimum Space—Time Processing |
|
|
421 | (18) |
|
|
|
|
421 | (2) |
|
|
423 | (2) |
|
8.3. Difference Among the Performance Potentials of the Cascade and Joint-Domain Processors |
|
|
425 | (5) |
|
8.4. The JDL–GLR Algorithm |
|
|
430 | (6) |
|
8.4.1. The JDL–GLR Principle |
|
|
431 | (2) |
|
8.4.2. The JDL–GLR Detection Performance |
|
|
433 | (1) |
|
8.4.3. Detection Performance Comparison |
|
|
433 | (3) |
|
8.4.4. Other Features of JDL–GLR |
|
|
436 | (1) |
|
8.5. Conclusions and Discussion |
|
|
436 | (3) |
|
Chapter 9 A Printed-Circuit Smart Antenna with Hemispherical Coverage for High Data-Rate Wireless Systems |
|
|
439 | (4) |
|
|
|
|
443 | (160) |
|
E.C. Barite, R.M. Davis, R.L. Fante, T.P. Guella, J.A. Torres, and J. Vaccaro |
|
|
|
10.1. Cancellation of Specular and Diffuse Jammer Multipath Using a Hybrid Adaptive Array |
|
|
446 | (15) |
|
|
|
|
446 | (1) |
|
10.1.2. Why Multipath Requires Additional Degrees of Freedom |
|
|
446 | (1) |
|
|
451 | (1) |
|
10.1.4. Numerical Calculations |
|
|
456 | (1) |
|
10.1.5. Summary and Discussion |
|
|
460 | (1) |
|
10.2. Some Limitations on the Effectiveness of Airborne Adaptive Radar |
|
|
461 | (29) |
|
E.C. Barile, R.L. Fante, and J.A. Torres |
|
|
|
|
461 | (1) |
|
10.2.2. Theoretical Introduction |
|
|
465 | (1) |
|
10.2.3. Two-Element Displaced Phase Center Antenna |
|
|
472 | (1) |
|
10.2.4. Simulation Results |
|
|
478 | (1) |
|
10.2.4.1. Internal Clutter Motion |
|
|
478 | (1) |
|
10.2.4.2. Aircraft Crabbing |
|
|
482 | (1) |
|
10.2.4.3. Near-Field Obstacles |
|
|
484 | (1) |
|
10.2.4.4. Antenna Errors (Channel Mismatch) |
|
|
487 | (3) |
|
|
490 | (1) |
|
10.3. Clutter Covariance Smoothing by Subaperture Averaging |
|
|
490 | (7) |
|
R.L. Fante, E.C. Barile, and T.P. Guella |
|
|
|
|
490 | (1) |
|
10.3.2. Analysis for an Airborne Radar |
|
|
492 | (1) |
|
|
496 | (1) |
|
10.4. Cancellation of Diffuse Jammer Multipath by an Airborne Adaptive Radar |
|
|
497 | (21) |
|
R.L. Fante and J.A. Torres |
|
|
|
|
497 | (1) |
|
10.4.2. Filtered Received Signals |
|
|
502 | (1) |
|
10.4.2.1. Received Jammer and Noise Signals |
|
|
502 | (1) |
|
10.4.2.2. Interference Covariance Matrix |
|
|
505 | (1) |
|
10.4.2.3. Steering-Vector and Received Target Signal |
|
|
508 | (1) |
|
10.4.3. Numerical Results |
|
|
509 | (1) |
|
|
509 | (1) |
|
|
512 | (1) |
|
|
513 | (1) |
|
|
513 | (1) |
|
10.4.3.5. Temporal Averaging |
|
|
514 | (1) |
|
|
514 | (3) |
|
10.4.4. Summary and Discussion |
|
|
517 | (1) |
|
10.5. Wideband Cancellation of Multiple Mainbeam Jammers |
|
|
518 | (13) |
|
R.L. Fante, R.M. Davis, and T.P. Guella) |
|
|
|
|
518 | (1) |
|
10.5.2. Calculation of the Array Performance |
|
|
520 | (1) |
|
10.5.3. Simulation Results |
|
|
523 | (1) |
|
10.5.3.1. Spatial Span and Location of the Auxiliaries |
|
|
523 | (1) |
|
10.5.3.2. Required Number of Auxiliaries and Gain per Auxiliaries |
|
|
524 | (1) |
|
10.5.3.3. Signal-to-Interference Ratio after Cancellation |
|
|
527 | (1) |
|
10.5.3.4. Simultaneous Nulling of Mainlobe and Sidelobe Jammers |
|
|
529 | (1) |
|
10.5.4. Summary and Discussion |
|
|
530 | (1) |
|
10.6. Adaptive Space–Time Radar |
|
|
531 | (9) |
|
|
|
|
531 | (1) |
|
10.6.2. Understanding the Results in Equation 10.169 and Equation 10.170 |
|
|
533 | (1) |
|
10.6.3. Sequential Cancellation of Jammers and Clutter |
|
|
536 | (1) |
|
|
538 | (1) |
|
10.6.5. Additional Considerations |
|
|
539 | (1) |
|
|
540 | (1) |
|
10.7. Synthesis of Adaptive Monopulse Patterns |
|
|
540 | (3) |
|
|
|
|
540 | (1) |
|
|
542 | (1) |
|
10.8. Ground and Airborne Target Detection with Bistatic Adaptive Space-Based Radar |
|
|
543 | (10) |
|
|
|
|
543 | (1) |
|
|
544 | (1) |
|
|
544 | (1) |
|
10.8.2.2. Difference Beam |
|
|
545 | (1) |
|
10.8.3. Numerical Studies of Effectiveness |
|
|
546 | (1) |
|
|
548 | (1) |
|
10.8.3.2. Difference beam |
|
|
551 | (2) |
|
|
553 | (1) |
|
10.9. Adaptive Nulling of Synthetic Aperture Radar (SAR) Sidelobe Discretes |
|
|
553 | (10) |
|
|
|
|
553 | (1) |
|
10.9.2. Fully Adaptive SAR |
|
|
554 | (1) |
|
10.9.3. Overlapped-Subarray SAR |
|
|
557 | (1) |
|
10.9.4. Numerical Results |
|
|
559 | (1) |
|
|
563 | (1) |
|
10.10. Wideband Cancellation of Interference in a Global Positioning System (GPS) Receive Array |
|
|
563 | (22) |
|
R.L. Fante and J.J. Vaccaro |
|
|
|
|
563 | (1) |
|
10.10.2. Adaptive Filter Weights |
|
|
564 | (1) |
|
10.10.2.1. Maximum Signal-to-Interference Ratio |
|
|
565 | (1) |
|
10.10.2.2. Minimum Mean Square Error |
|
|
566 | (1) |
|
10.10.2.3. Minimum Output Power |
|
|
567 | (1) |
|
10.10.3. Signal Distortion Introduced by the Processor |
|
|
567 | (1) |
|
10.10.4. Suboptimum Space—Frequency Processing |
|
|
570 | (1) |
|
10.10.5. Numerical Simulations |
|
|
571 | (1) |
|
|
571 | (1) |
|
10.10.5.2. Effect of Channel Mismatch |
|
|
574 | (1) |
|
10.10.5.3. Effect of Steering-Vector Mismatch |
|
|
576 | (1) |
|
10.10.5.4. Distortion Introduced by the Adaptive Filter |
|
|
577 | (3) |
|
10.10.6. Space—Time vs. Suboptimum Space—Frequency Processing |
|
|
580 | (1) |
|
|
585 | (1) |
|
10.11. A Maximum-Likelihood Beamspace Processor for Improved Search and Track |
|
|
585 | (21) |
|
R.M. Davis and R.L. Fante |
|
|
|
|
585 | (1) |
|
10.11.2. Maximum-Likelihood Beamspace Processor (MLBP) |
|
|
586 | (1) |
|
|
589 | (1) |
|
10.11.3.1. The First Stage |
|
|
589 | (1) |
|
10.11.3.2. The Second Stage |
|
|
590 | (1) |
|
10.11.3.3. Target Detection |
|
|
592 | (1) |
|
10.11.4. Numerical Examples |
|
|
593 | (1) |
|
10.11.4.1. Improved Clear Environment Search Performance |
|
|
594 | (1) |
|
10.11.4.2. Improved Clear Environment Angle Estimation |
|
|
595 | (1) |
|
10.11.4.3. Performance against a Single Mainlobe Interferer |
|
|
596 | (4) |
|
|
600 | (3) |
Part III Adaptive Receivers |
|
|
|
603 | (2) |
|
|
|
Chapter 12 Spherically Invariant Random Processes for Radar Clutter Modeling, Simulation, and Distribution Identification |
|
|
605 | (102) |
|
|
|
|
606 | (2) |
|
|
608 | (18) |
|
|
608 | (1) |
|
|
609 | (1) |
|
12.2.3. Characterization of SIRVs |
|
|
610 | (5) |
|
12.2.4. Determining the PDF of a SIRV |
|
|
615 | (3) |
|
12.2.5. Properties of SIRVs |
|
|
618 | (1) |
|
12.2.5.1. PDF Characterization |
|
|
618 | (1) |
|
12.2.5.2. Closure Under Linear Transformation |
|
|
618 | (1) |
|
12.2.5.3. Minimum Mean Square Error Estimation |
|
|
618 | (1) |
|
12.2.5.4. Distributions of Sums of SIRVs |
|
|
621 | (1) |
|
12.2.5.5. Markov Property for SIRPs |
|
|
622 | (1) |
|
12.2.5.6. Kalman Filter for SIRPs |
|
|
624 | (1) |
|
12.2.5.7. Statistical Independence |
|
|
625 | (1) |
|
12.2.5.8. Ergodicity of SIRPs |
|
|
625 | (1) |
|
|
626 | (1) |
|
12.3. Radar Clutter Modelling Using Spherically Invariant Random Processes |
|
|
626 | (39) |
|
|
626 | (2) |
|
12.3.2. Problem Statement |
|
|
628 | (2) |
|
12.3.3. Techniques for Determining the SIRV PDF |
|
|
630 | (1) |
|
12.3.3.1. SIRVs with Known Characteristic PDF |
|
|
630 | (1) |
|
12.3.3.2. SIRVs with Unknown Characteristic PDFs |
|
|
631 | (1) |
|
12.3.3.3. Hankel Transform Approach |
|
|
632 | (2) |
|
12.3.4. Examples of Complex SIRVs |
|
|
634 | (1) |
|
12.3.4.1. Examples Based on the Characteristic PDF |
|
|
634 | (1) |
|
12.3.4.2. Examples Based on Marginal Envelope PDF |
|
|
641 | (1) |
|
12.3.4.3. Examples Using the Marginal Characteristic Function |
|
|
651 | (5) |
|
12.3.5. Significance of the Quadratic Form of the SIRV PDF |
|
|
656 | (8) |
|
|
664 | (1) |
|
12.4. Computer Generation of Simulated Radar Clutter Characterized as SIRPs |
|
|
665 | (15) |
|
|
665 | (1) |
|
|
666 | (4) |
|
12.4.3. Two Canonical Simulation Procedures for Generating SIRVs |
|
|
670 | (5) |
|
12.4.4. Performance Assessment of the Simulation Schemes |
|
|
675 | (2) |
|
|
677 | (3) |
|
12.5. Distribution Approximation to Radar Clutter Characterized by SIRPs |
|
|
680 | (25) |
|
|
680 | (2) |
|
|
682 | (1) |
|
12.5.3. Goodness of Fit Test |
|
|
682 | (7) |
|
12.5.4. Distribution Approximation |
|
|
689 | (5) |
|
12.5.5. Parameter Estimation |
|
|
694 | (1) |
|
12.5.5.1. Estimation of Location and Scale Parameters |
|
|
695 | (1) |
|
12.5.5.2. Shape Parameter Estimation |
|
|
696 | (1) |
|
12.5.6. Assessing the Distributional Properties of SIRVs |
|
|
697 | (3) |
|
12.5.7. Distribution Identification of SIRVs |
|
|
700 | (4) |
|
12.5.8. Alternative Method for Parameter Estimation |
|
|
704 | (1) |
|
|
705 | (1) |
|
|
705 | (3) |
|
|
705 | (1) |
|
12.6.2. Suggestions for Future Research |
|
|
706 | (1) |
|
Chapter 13 Weak Signal Detection |
|
|
707 | (92) |
|
|
|
|
708 | (4) |
|
13.1.1. Weak Signal Problem |
|
|
708 | (2) |
|
13.1.2. NonGaussian Correlated Data |
|
|
710 | (1) |
|
13.1.3. Thesis Organization |
|
|
711 | (1) |
|
13.2. The Locally Optimum Detector (LOD) |
|
|
712 | (22) |
|
13.2.1. Literature Review |
|
|
712 | (3) |
|
13.2.2. Spherically Invariant Random Processes (SIRP) |
|
|
715 | (1) |
|
13.2.3. The Derivation of the Locally Optimum Detector |
|
|
716 | (1) |
|
13.2.4. The Series Approach |
|
|
717 | (1) |
|
13.2.4.1. The Known Signal Case |
|
|
717 | (1) |
|
13.2.4.2. The Random Signal Case |
|
|
720 | (1) |
|
13.2.5. The Lagrangian Approach |
|
|
721 | (1) |
|
13.2.5.1. The Known Signal Case |
|
|
721 | (1) |
|
13.2.5.2. The Random Signal Case |
|
|
723 | (3) |
|
|
726 | (1) |
|
13.2.6.1. The Known Signal Problem |
|
|
726 | (1) |
|
13.2.6.2. The Random Signal Problem |
|
|
729 | (5) |
|
13.3. Determining Thresholds for the LOD |
|
|
734 | (30) |
|
13.3.1. Literature Review |
|
|
734 | (1) |
|
13.3.1.1. Classical Methods for Evaluating Thresholds |
|
|
734 | (1) |
|
13.3.2. Extreme Value Theory |
|
|
735 | (1) |
|
13.3.3. The Radar Problem |
|
|
736 | (1) |
|
13.3.4. Methods for Estimating Thresholds |
|
|
737 | (1) |
|
13.3.4.1. Estimates Based on Raw Data |
|
|
737 | (1) |
|
13.3.4.2. Estimates Motivated by the Extreme Value Theory |
|
|
738 | (1) |
|
13.3.5. The Generalized Pareto Distribution |
|
|
739 | (1) |
|
13.3.5.1. Methods for Estimating the Parameters of the GPD |
|
|
742 | (1) |
|
13.3.5.2. Estimation of Thresholds |
|
|
748 | (1) |
|
13.3.6. Numerical Results |
|
|
749 | (1) |
|
13.3.6.1. Characterization of Tail Shape for Known Distributions |
|
|
749 | (1) |
|
13.3.6.2. Empirical Properties of the Estimators for Known Distributions |
|
|
749 | (1) |
|
13.3.6.3. Effect of the Choice of A on the Threshold Estimates |
|
|
756 | (2) |
|
|
758 | (1) |
|
13.3.7.1. Known Distribution Case |
|
|
758 | (1) |
|
13.3.7.2. An Unknown Distribution Case |
|
|
759 | (5) |
|
13.4. Performance of the LOD for Multivariate Student-T and K-Distributed Disturbances |
|
|
764 | (24) |
|
13.4.1. The Multivariate Student-T Distribution |
|
|
764 | (1) |
|
13.4.1.1. The Locally Optimum Detector |
|
|
766 | (1) |
|
13.4.1.2. Computer Simulation of Performance |
|
|
768 | (1) |
|
13.4.1.3. Results of the Computer Simulation |
|
|
771 | (5) |
|
13.4.2. The Multivariate K-Distribution |
|
|
776 | (1) |
|
13.4.2.1. The Locally Optimum Detector |
|
|
778 | (1) |
|
13.4.2.2. Computer Simulation of Performance |
|
|
780 | (1) |
|
|
783 | (2) |
|
13.4.3. Determining LOD Threshold with Real Data |
|
|
785 | (3) |
|
13.5. Performance of the Amplitude Dependent LOD |
|
|
788 | (9) |
|
13.5.1. The Amplitude Dependent LOD for the Multivariate K-Distributed Disturbance |
|
|
789 | (1) |
|
13.5.1.1. Results of Computer Simulation |
|
|
790 | (4) |
|
13.5.2. The Amplitude Dependent LOD for the Student-T Distributed Disturbance |
|
|
794 | (1) |
|
|
796 | (1) |
|
|
797 | (3) |
|
|
797 | (1) |
|
13.6.2. Suggestion for Future Research |
|
|
798 | (1) |
|
Chapter 14 A Generalization of Spherically Invariant Random Vectors (SIRVs) with an Application to Reverberation Reduction in a Correlation Sonar |
|
|
799 | (114) |
|
|
|
|
800 | (3) |
|
14.2. The SIRV Representation Theorem |
|
|
803 | (7) |
|
14.2.1. The Traditional SIRV Model |
|
|
803 | (2) |
|
14.2.2. The Generalized SIRV Model |
|
|
805 | (2) |
|
14.2.3. A Comparison of the Traditional and Generalized Models |
|
|
807 | (3) |
|
14.3. Generalized SIRV Properties |
|
|
810 | (16) |
|
14.3.1. Linear Transformation |
|
|
810 | (1) |
|
14.3.2. The Generalized SIRV "Bootstrap" Theorem |
|
|
811 | (1) |
|
14.3.3. The Monotonicity of hNM(αx1,...,αxM) |
|
|
812 | (1) |
|
14.3.4. Spherical Coordinates |
|
|
812 | (5) |
|
14.3.5. The Generalized SIRV Bessel Function Representation |
|
|
817 | (5) |
|
14.3.6. Minimum Mean Square Error Estimation |
|
|
822 | (2) |
|
14.3.7. The Generalized SIRV Laplace Transform Representation |
|
|
824 | (2) |
|
14.4. The Generalized SIRV Density Function |
|
|
826 | (30) |
|
14.4.1. Direct Evaluation of hNM(αx) |
|
|
827 | (1) |
|
|
828 | (1) |
|
|
841 | (3) |
|
14.4.2. Evaluation of hNM Using the Laplace Transform |
|
|
844 | (1) |
|
|
846 | (1) |
|
|
854 | (2) |
|
14.5. Generalized SIRV Generation |
|
|
856 | (7) |
|
14.5.1. Multivariate Rejection Theorem |
|
|
857 | (3) |
|
14.5.2. Application of the Rejection Theorem |
|
|
860 | (1) |
|
14.5.3. Examples of Random Variable Generation |
|
|
861 | (1) |
|
|
861 | (1) |
|
|
863 | (1) |
|
14.6. Generalized SIRV Density Approximation |
|
|
863 | (13) |
|
14.6.1. Univariate Density Approximation |
|
|
865 | (2) |
|
14.6.2. 2-D Density Approximation |
|
|
867 | (1) |
|
14.6.3. Multivariate Density Approximation |
|
|
868 | (1) |
|
14.6.4. Real Data Analysis |
|
|
869 | (7) |
|
14.7. Correlation Sonar Fundamentals |
|
|
876 | (20) |
|
14.7.1. Correlation Sonar Basic Operation |
|
|
876 | (4) |
|
14.7.2. Correlation Sonar Reverberation Model |
|
|
880 | (1) |
|
14.7.2.1. Monostatic and Bistatic Reverberation |
|
|
881 | (1) |
|
14.7.2.2. Reverberation as Heard on a Moving Correlation Sonar Platform |
|
|
883 | (7) |
|
14.7.3. A Sub-Optimal Correlation Sonar Receiver |
|
|
890 | (5) |
|
14.7.4. Performance in Previous Pulse Interference |
|
|
895 | (1) |
|
|
896 | (13) |
|
14.8.1. Optimum M-ary Detection |
|
|
897 | (4) |
|
14.8.2. Sub-Optimum M-ary Detection |
|
|
901 | (3) |
|
14.8.3. Generalized SIRV M-ary Detection |
|
|
904 | (5) |
|
|
909 | (6) |
|
14.9.1. Suggestions for Future Research |
|
|
910 | (3) |
|
|
913 | (126) |
|
T.J. Barnard, A.D. Keckler, F. Khan, J.H. Michels, M. Rangaswamy, D.L. Stadelman, and D.D. Weiner |
|
|
|
15.1. Statistical Normalization of Spherically Invariant NonGaussian Clutter |
|
|
915 | (13) |
|
|
|
|
915 | (1) |
|
|
916 | (1) |
|
|
919 | (1) |
|
|
920 | (1) |
|
15.1.5. Statistical Normalization |
|
|
925 | (1) |
|
|
927 | (1) |
|
15.2. NonGaussian Clutter Modeling and Application to Radar Target Detection |
|
|
928 | (10) |
|
A.D. Keckler, D.L. Stadelman, and D.D. Weiner |
|
|
|
|
928 | (1) |
|
15.2.2. Summary of the SIRV Model |
|
|
929 | (1) |
|
15.2.3. Distribution Approximation Using the Ozturk Algorithm |
|
|
930 | (1) |
|
15.2.4. Approximation of SIRVs |
|
|
933 | (1) |
|
15.2.5. NonGaussian Receiver Performance |
|
|
936 | (1) |
|
15.2.6. Concluding Remarks |
|
|
938 | (1) |
|
15.3. Adaptive Ozturk-Based Receivers for Small Signal Detection in Impulsive NonGaussian Clutter |
|
|
938 | (17) |
|
D.L. Stadelman, A.D. Keckler, and D.D. Weiner |
|
|
|
|
938 | (1) |
|
15.3.2. Summary of the SIRV Model |
|
|
940 | (1) |
|
15.3.3. The Ozturk Algorithm and SIRV PDF Approximation |
|
|
941 | (1) |
|
15.3.4. NonGaussian SIRV Receivers |
|
|
944 | (1) |
|
15.3.5. Graphical Representation of SIRV Receiver Behavior |
|
|
945 | (1) |
|
15.3.6. Adaptive Ozturk-Based Receiver |
|
|
951 | (1) |
|
|
953 | (2) |
|
15.4. Efficient Determination of Thresholds via Importance Sampling for Monte Carlo Evaluation of Radar Performance in NonGaussian Clutter |
|
|
955 | (13) |
|
D.L. Stadelman, D.D. Weiner, and A.D. Keckler |
|
|
|
|
955 | (1) |
|
15.4.2. The Complex SIRV Clutter Model |
|
|
956 | (1) |
|
15.4.3. NonGaussian SIRV Receivers |
|
|
957 | (1) |
|
15.4.3.1. Known Covariance Matrix Case |
|
|
959 | (1) |
|
15.4.3.2. Unknown Covariance Matrix Case |
|
|
959 | (1) |
|
15.4.4. Importance Sampling |
|
|
960 | (1) |
|
15.4.5. Estimation of SIRV Detector Thresholds with Importance Sampling |
|
|
962 | (1) |
|
15.4.6. Extreme Value Theory Approximation |
|
|
967 | (1) |
|
15.5. Rejection-Method Bounds for Monte Carlo Simulation of SIRVs |
|
|
968 | (12) |
|
A.D. Keckler and D.D. Weiner |
|
|
|
|
968 | (1) |
|
15.5.2. Summary of the SIRV Model |
|
|
969 | (1) |
|
15.5.3. Generation of SIRV Distributed Samples |
|
|
970 | (1) |
|
15.5.4. Generation of PDF Bounds |
|
|
975 | (1) |
|
15.5.5. Concluding Remarks |
|
|
979 | (1) |
|
15.6. Optimal NonGaussian Processing in Spherically Invariant Interference |
|
|
980 | (44) |
|
D. Stadelman and D.D. Weiner |
|
|
|
|
980 | (1) |
|
15.6.2. A Review of the SIRV Model |
|
|
982 | (1) |
|
15.6.2.1. Definition of the SIRV Model |
|
|
982 | (1) |
|
15.6.2.2. SIRV Properties |
|
|
984 | (1) |
|
15.6.2.3. The Complex SIRV Model |
|
|
987 | (1) |
|
|
988 | (1) |
|
15.6.3. Optimal Detection in NonGaussian SIRV Clutter |
|
|
988 | (1) |
|
|
988 | (1) |
|
15.6.3.2. Completely Known Signals |
|
|
989 | (1) |
|
15.6.3.3. Signals with Random Parameters |
|
|
990 | (1) |
|
15.6.3.4. Generalized Likelihood Ratio Test |
|
|
1005 | (1) |
|
15.6.3.5. Maximum Likelihood Matched Filter |
|
|
1008 | (3) |
|
15.6.4. Nonlinear Receiver Performance |
|
|
1011 | (1) |
|
|
1011 | (1) |
|
15.6.4.2. Indirect Simulation of SIRV Receiver Statistics |
|
|
1012 | (1) |
|
15.6.4.3. Student t SIRV Results |
|
|
1014 | (1) |
|
|
1018 | (1) |
|
15.6.4.5. NP vs. GLRT Receiver Comparison |
|
|
1020 | (1) |
|
15.6.4.6. Additional Implementation Issues |
|
|
1022 | (1) |
|
|
1023 | (1) |
|
15.7. Multichannel Detection for Correlated NonGaussian Random Processes Based on Innovations |
|
|
1024 | (78) |
|
M. Rangaswamy, J.H. Michels, and D.D. Weiner |
|
|
|
|
1024 | (1) |
|
|
1025 | (1) |
|
15.7.3. Minimum Mean-Square Estimation Involving SIRPs |
|
|
1026 | (1) |
|
15.7.4. Innovations-Based Detection Algorithm for SIRPs Using Multichannel Data |
|
|
1028 | (1) |
|
15.7.4.1. Block Form of the Multichannel Likelihood Ratio |
|
|
1028 | (1) |
|
15.7.4.2. Sequential Form of the Multichannel Likelihood Ratio |
|
|
1029 | (3) |
|
15.7.5. Detection Results Using Monte-Carlo Simulation |
|
|
1032 | (1) |
|
15.7.6. Estimator Performance for SIRPs |
|
|
1036 | (1) |
|
|
1037 | (2) |
Appendices |
|
1039 | (78) |
|
Appendix A. Stochastic Representation for the Normalized Generalized Inner Product (Section 3.1) |
|
|
1040 | (1) |
|
Appendix B. Expectation-Maximization Algorithm for Covariance Matrix Estimation (Section 3.2) |
|
|
1041 | (3) |
|
Appendix C. Algebraic Derivations for Johnson Distributions (Section 4.2) |
|
|
1044 | (14) |
|
C.1. Johnson Su Distribution |
|
|
1044 | (5) |
|
C.2. Johnson SB Distribution |
|
|
1049 | (7) |
|
C.3. Johnson SL Distribution |
|
|
1056 | (2) |
|
Appendix D. Connections Between ga, ka, Pa (Section 4.2) |
|
|
1058 | (1) |
|
Appendix E. Cancellation for an Analog Hybrid Canceler (Section 10.1) |
|
|
1059 | (1) |
|
Appendix F. Cancellation for a Digital Hybrid Canceler (Section 10.1) |
|
|
1060 | (2) |
|
Appendix G. Matrix Elements in Equation 10.10 (Section 10.1) |
|
|
1062 | (1) |
|
Appendix H. Asymptotic Cancellation Curves (Section 10.1) |
|
|
1063 | (2) |
|
Appendix I. Optimum Values of N and M (Section 10.1) |
|
|
1065 | (2) |
|
Appendix J. Effect of Near-Field Nulling Constraint (Section 10.2) |
|
|
1067 | (2) |
|
Appendix K. Equivalence of Element Space and Beam Space Results (Section 10.4) |
|
|
1069 | (1) |
|
Appendix L. Evaluation of the Integrals in Equation 10.128 and Equation 10.129 (Section 10.4) |
|
|
1070 | (2) |
|
Appendix M. Calculation of the Adaptive Weights (Section 10.5) |
|
|
1072 | (3) |
|
Appendix N. Elimination of False Targets (Section 10.5) |
|
|
1075 | (1) |
|
Appendix O. Approximate Derivation of Equation 10.165 (Section 10.5) |
|
|
1076 | (3) |
|
Appendix P. Interference Covariance Matrix (Section 10.10) |
|
|
1079 | (3) |
|
Appendix Q. Number of Time Taps Required (Section 10.10) |
|
|
1082 | (2) |
|
Appendix R Inclusion of Polarization (Section 10.10) |
|
|
1084 | (1) |
|
Appendix S. Signal Cancellation in First Stage Beamformer (Section 10.11) |
|
|
1085 | (3) |
|
Appendix T. Interferer-Free Limit of Equation 10.298 (Section 10.11) |
|
|
1088 | (1) |
|
Appendix U. Properties of SIRVs (Section 12.2) |
|
|
1089 | (3) |
|
U.1. Statistical Independence |
|
|
1089 | (1) |
|
U.2. Spherically Symmetric Characteristic Function |
|
|
1090 | (1) |
|
U.3. Relationship between Higher Order and Lower Order SIRV PDFs |
|
|
1091 | (1) |
|
Appendix V. Computer Generation of SIRVs Using Rejection Method (Section 12.4) |
|
|
1092 | (3) |
|
|
1092 | (1) |
|
|
1093 | (2) |
|
Appendix W. Maximum Likelihood Estimation Involving SIRVs (Section 12.5) |
|
|
1095 | (7) |
|
Appendix X. Issues Related to Extreme Value Theory (Section 13.3) |
|
|
1102 | (7) |
|
X.1. Limiting Forms for the Largest Order Statistic |
|
|
1102 | (4) |
|
|
1103 | (2) |
|
|
1105 | (1) |
|
X.2. Tails of Probability Density Functions |
|
|
1106 | (2) |
|
|
1107 | (1) |
|
|
1107 | (1) |
|
|
1107 | (1) |
|
X.3. PDF of the rth Order Statistic |
|
|
1108 | (1) |
|
Appendix Y. Canonical Form Derivation (Section 15.6) |
|
|
1109 | (2) |
|
Appendix Z. Alternative Spherical Coordinate SIRV Representations (Section 15.6) |
|
|
1111 | (6) |
Acronyms |
|
1117 | (16) |
References |
|
1133 | (36) |
Computer Programs available at CRC Press Website |
|
1169 | (14) |
|
A.. GENREJ – Generalized Acceptance-Rejection Method Random Number Generator |
|
|
1169 | (2) |
|
|
|
B. OZTURK – Univariate Probability Distribution approximation Algorithm |
|
|
1171 | (3) |
|
|
|
C. OZSIRC – Multivariate Probability Distribution Algorithm for Spherically Invariant Random Vectors (SIRVs) |
|
|
1174 | |
|
|
|
D. GMIXEM – Approximation of SIRVs With Gaussian Mixtures Using the Expectation-Maximization (EM) Algorithm |
|
|
1171 | (8) |
|
|
|
E. SIRVOC – Maximum Liklihood Estimation of the Covariance Matrix for an SIRV |
|
|
1179 | (2) |
|
|
|
F. THRESHOLD – Generation of Receive Thresholds for Various False Alarm Probabilities and Sampled Unknown Noise Distributions |
|
|
1181 | (2) |
|
|
|
These programs may be downloaded free of charge at the following Universal Resource Locator (URL) address: http://www.crcpress.com/e_products/downloads/download.asp?cat_no=DK6045 |
|
|
Index |
|
1183 | |