Muutke küpsiste eelistusi

E-raamat: Adaptive Control of Systems with Actuator Failures

  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447137580
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Jun-2013
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447137580

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

It is because the actuator is the final step in the control chain that failure can be so important and hard to compensate for. When the nature or location of the failure is unknown, the offsetting of consequent system uncertainties becomes even more awkward.



This monograph centers on counteracting situations in which unknown control inputs become indeterminately unresponsive over an uncertain period of time by adapting the responses of remaining functional actuators. Both "lock-in-place" and varying-value failures are dealt with. The results presented demonstrate:



the existence of nominal plant-model matching controller structures with associated matching conditions for all possible failure patterns;



the choice of a desirable adaptive controller structure;



derivation of novel error models in the presence of failures;



the design of adaptive laws allowing controllers to respond to combinations of uncertainties stemming from activator failures and system parameters.

Arvustused

From the reviews:



The monograph describes adaptive actuator failure compensation control schemes for systems with uncertain actuator failures The monograph is a comprehensive and self-contained exposition supposing the knowledge of linear systems and feedback control at the undergraduate level. Graduate students, researchers, and professionals working in the areas of control engineering, computer science, and applied mathematics will appreciate this book as a significant up-to-date technical reference in the field.



Zentralblatt MATH 1063 (2005) (Reviewer: Lubomír Bakule)

Preface v
Acknowledgements xi
1. Introduction
1(14)
1.1 Actuator Failure Compensation
1(3)
1.1.1 Literature Overview
2(2)
1.1.2 Research Motivation
4(1)
1.2 Adaptive Control System Concepts
4(3)
1.3 Adaptive Actuator Failure Compensation
7(6)
1.3.1 Failure Compensation for Linear Systems
7(2)
1.3.2 Failure Compensation for Nonlinear Systems
9(1)
1.3.3 Basic Assumption
10(1)
1.3.4 Basic Actuation Scheme for Failure Compensation
11(1)
1.3.5 Redundancy and Failure Uncertainty
12(1)
1.4 Book Outline
13(2)
2. State Feedback Designs for State Tracking
15(40)
2.1 Fundamental Issues and Solutions
15(12)
2.1.1 Basic Plant-Model Matching Conditions
17(2)
2.1.2 Actuator Failure Compensation
19(2)
2.1.3 Adaptive Compensation Design
21(6)
2.2 Designs for Parametrized Varying Failures
27(4)
2.2.1 Plant-Model Matching Control Design
27(2)
2.2.2 Adaptive Control Design
29(2)
2.3 Designs for Unparametrizable Failures
31(7)
2.3.1 Stabilizing Control
32(2)
2.3.2 Adaptive Control Design
34(2)
2.3.3 Robust Adaptation
36(2)
2.4 Designs for Multigroup Actuators
38(4)
2.5 Design for up to m-q Actuator Failures
42(10)
2.5.1 Problem Statement
43(1)
2.5.2 Plant-Model Matching Control
44(3)
2.5.3 Adaptive Control Design
47(4)
2.5.4 Boeing 747 Lateral Control Simulation
51(1)
2.6 Concluding Remarks
52(3)
3 . State Feedback Designs for Output Tracking 55(140)
3.1 Designs for Lock-in-Place Failures
55(12)
3.1.1 Problem Statement
56(1)
3.1.2 A Plant-Model Output Matching Controller
56(3)
3.1.3 Adaptive Control Design
59(4)
3.1.4 Boeing 747 Lateral Control Simulation I
63(4)
3.2 Designs for Varying Failures
67(18)
3.2.1 Problem Statement
67(3)
3.2.2 A Lemma for Output Matching
70(3)
3.2.3 Adaptive Rejection of Unmatched Input Disturbance
73(2)
3.2.4 Application to Actuator Failure Compensation
75(3)
3.2.5 Extension to the General Case
78(2)
3.2.6 Boeing 747 Lateral Control Simulation II
80(5)
4. Output Feedback Designs for Output Tracking
85(18)
4.1 Problem Statement
85(2)
4.2 Plant-Model Output Matching
87(3)
4.3 Adaptive Control
90(4)
4.4 Boeing 747 Lateral Control Simulation
94(1)
4.5 Designs for Varying Failures
95(8)
4.5.1 Adaptive Disturbance Rejection
98(2)
4.5.2 Adaptive Failure Compensation
100(3)
5. Designs for Multivariable Systems
103(20)
5.1 Problem Statement
104(2)
5.2 Plant-Model Matching Control
106(5)
5.3 Adaptive Control Designs
111(7)
5.3.1 Basic Controller Structure
111(1)
5.3.2 Error Equation
112(1)
5.3.3 Design I: The Basic Scheme
113(2)
5.3.4 Design II: Based on SDU Factorization of Kpa
115(3)
5.4 Boeing 737 Lateral Control Simulation
118(3)
5.5 Concluding Remarks
121(2)
6. Pole Placement Designs
123(14)
6.1 Problem Statement
123(1)
6.2 Nominal Matching Controller Design
124(6)
6.3 Adaptive Control Scheme
130(2)
6.4 DC-8 Lateral Control Simulation
132(5)
7. Designs for Linearized Aircraft Models
137(26)
7.1 Linearized Aircraft Models
137(2)
7.2 Design for Uncertain Actuator Failures
139(4)
7.2.1 Problem Statement
140(1)
7.2.2 Adaptive Compensation Scheme
141(1)
7.2.3 Longitudinal Control Simulation I
142(1)
7.3 State Tracking Design
143(9)
7.3.1 Problem Statement
143(2)
7.3.2 Adaptive Control Scheme
145(1)
7.3.3 Longitudinal Control Simulation II
146(6)
7.4 Output Tracking Designs
152(4)
7.4.1 Problem Statement
152(1)
7.4.2 Adaptive Control Schemes
153(2)
7.4.3 Longitudinal Control Simulation III
155(1)
7.5 Concluding Remarks
156(7)
8. Robust Designs for Discrete-Time Systems
163(14)
8.1 Problem Statement
164(1)
8.2 Plant-Model Output Matching
165(3)
8.3 Adaptive Control Design
168(2)
8.4 Robust Adaptive Failure Compensation
170(4)
8.4.1 Robustness of Plant-Model Matching
171(1)
8.4.2 Robust Adaptive Laws
172(2)
8.5 Boeing 747 Lateral Control Simulation
174(3)
9. Failure Compensation for Nonlinear Systems
177(18)
9.1 Problem Formulation
177(2)
9.2 Design for Feedback Linearizable Systems
179(6)
9.3 An Alternative Design
185(5)
9.4 Issues for Nonlinear Dynamics
190(5)
10. State Feedback Designs for Nonlinear Systems 195(38)
10.1 Design for Systems Without Zero Dynamics
195(1)
10.1.1 Output Matching Design
199(1)
10.1.2 Adaptive Actuator Failure Compensation
201(1)
10.1.3 Wing Rock Control of an Aircraft Model
210(1)
10.2 Design for Systems with Zero Dynamics
211(1)
10.2.1 An Adaptive Failure Compensation Design
213(1)
10.2.2 An Adaptive Design with Relaxed Conditions
219(1)
10.2.3 Robustness
224(1)
10.2.4 Longitudinal Control of a Twin Otter Aircraft
225(8)
11. Nonlinear Output Feedback Designs 233(32)
11.1 Problem Statement
233(3)
11.2 Adaptive Compensation Control
236(1)
11.2.1 State Observer
238(1)
11.2.2 Backstepping Design
238(8)
11.3 Stability Analysis
246(2)
11.4 Design for State-Dependent Nonlinearities
248(1)
11.4.1 Reduced-Order Observer
249(1)
11.4.2 Full-Order Observer
250(1)
11.4.3 Design Procedure
251(1)
11.4.4 Longitudinal Control of a Hypersonic Aircraft
253(9)
11.5 Concluding Remarks
262(3)
12. Conclusions and Research Topics 265(4)
Compensation Designs
265(1)
System Performance
266(1)
Robustness Issue
266(2)
Open Problems
268(1)
Potential Applications
268(1)
Appendix 269(16)
A.1 Model Reference Adaptive Control
269(1)
A.1.1 MRAC: State Feedback for State Tracking
269(1)
A.1.2 MRAC: State Feedback for Output Tracking
272(1)
A.1.3 MRAC: Output Feedback for Output Tracking
275(4)
A.2 Multivariable MRAC
279(3)
A.3 Adaptive Pole Placement Control
282(3)
References 285(10)
Index 295


Gang Tao received his B.S. degree in Electrical Engineering from the University of Science and Technology of China in 1982, his M.S. degrees in Electrical Engineering, Computer Engineering and Applied Mathematics in 1984, 1987, 1989, respectively, and Ph.D. degree in Electrical Engineering in 1989 all from the University of Southern California. He was a visiting assistant professor at Washington State University from 1989 to 1991, an assistant research engineer at the University of California at Santa Barbara from 1991 to 1992, and an assistant professor at the University of Virginia from 1992 to 1998, where he is now an associate professor. He was a guest editor for International Journal of Adaptive Control and Signal Processing, and is currently an associate editor for IEEE Transactions on Automatic Control and for the disciplines most important journal Automatica. He has been a program committee member for numerous international conferences, among them, American Control Conference and the Conference on Decision and Control in 2001 and 2002.. He has published five books, over 45 journal papers and book chapters, and over 95 conference papers on adaptive cotnrol, nonlinear control, multivariable control, optimal control, and control applications and robotics. He is a Senior Member of IEEE. His research has been supported by NSF, ARMY, NASA, MedQuest, SCEEE and Edison Power.