Muutke küpsiste eelistusi

E-raamat: Adaptive Micro Learning - Using Fragmented Time To Learn

(Univ Of Wollongong, Australia), (Univ Of Wollongong, Australia), (Univ Of Wollongong, Australia)
  • Formaat: 152 pages
  • Sari: Intelligent Information Systems 5
  • Ilmumisaeg: 18-Feb-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811207471
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 64,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 152 pages
  • Sari: Intelligent Information Systems 5
  • Ilmumisaeg: 18-Feb-2020
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811207471
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This compendium introduces an artificial intelligence-supported solution to realize adaptive micro learning over open education resource (OER). The advantages of cloud computing and big data are leveraged to promote the categorization and customization of OERs micro learning context. For a micro-learning service, OERs are tailored into fragmented pieces to be consumed within shorter time frames. Firstly, the current status of mobile-learning, micro-learning, and OERs are described. Then, the significances and challenges of Micro Learning as a Service (MLaaS) are discussed. A framework of a service-oriented system is provided, which adopts both online and offline computation domain to work in conjunction to improve the performance of learning resource adaptation. In addition, a comprehensive learner model and a knowledge base is prepared to semantically profile the learners and learning resource. The novel delivery and access mode of OERs suffers from the cold start problem because of the shortage of already-known learner information versus the continuously released new micro OERs. This unique volume provides an excellent feasible algorithmic solution to overcome the cold start problem."

Chapter 1 Introduction
1(8)
1.1 Background
1(5)
1.2 Research Objectives
6(1)
1.3 Contribution of the Book
6(1)
1.4 Outline of the Book
7(2)
Chapter 2 Literature Review
9(30)
2.1 Mobile Learning and Micro Learning
9(11)
2.2 Open Learning and Open Educational Resources
20(9)
2.3 Micro Open Learning
29(4)
2.4 Adaptive Learning: Learner Modelling and EDM & LA
33(6)
Chapter 3 Research Design
39(28)
3.1 Research Background
40(4)
3.2 Research Motivation
44(4)
3.3 Research Challenges
48(7)
3.4 Research Purpose
55(2)
3.5 System Framework
57(10)
Chapter 4 Comprehensive Learner Model for Micro Open Learning and Micro Open Learning Content
67(14)
4.1 Comprehensive Learner Model
68(8)
4.2 Micro Open Learning Content
76(5)
Chapter 5 Semantic Knowledge Base Construction: Education Data Mining and Learning Analytics Strategy
81
5.1 Conceptual Graph-Based Ontology Construction for Micro Open Learning and Proposed Data Processing Strategy
82(3)
5.2 EDM and LA Strategy
85