|
|
|
|
3 | (12) |
|
1.1 Clustering in the Era of Web 2.0 |
|
|
3 | (2) |
|
1.2 Research Issues and Challenges |
|
|
5 | (5) |
|
1.2.1 Representation of Social Media Data |
|
|
5 | (2) |
|
1.2.2 Scalability for Big Data |
|
|
7 | (1) |
|
1.2.3 Robustness to Noisy Features |
|
|
7 | (1) |
|
1.2.4 Heterogeneous Information Fusion |
|
|
8 | (1) |
|
1.2.5 Sensitivity to Input Parameters |
|
|
8 | (1) |
|
1.2.6 Online Learning Capability |
|
|
9 | (1) |
|
1.2.7 Incorporation of User Preferences |
|
|
9 | (1) |
|
1.3 Approach and Methodology |
|
|
10 | (3) |
|
|
13 | (2) |
|
|
13 | (2) |
|
2 Clustering and Its Extensions in the Social Media Domain |
|
|
15 | (30) |
|
|
15 | (8) |
|
|
15 | (1) |
|
2.1.2 Hierarchical Clustering |
|
|
16 | (1) |
|
2.1.3 Graph Theoretic Clustering |
|
|
17 | (1) |
|
2.1.4 Latent Semantic Analysis |
|
|
18 | (1) |
|
2.1.5 Non-Negative Matrix Factorization |
|
|
18 | (1) |
|
2.1.6 Probabilistic Clustering |
|
|
19 | (1) |
|
|
19 | (1) |
|
2.1.8 Density-Based Clustering |
|
|
20 | (1) |
|
2.1.9 Affinity Propagation |
|
|
21 | (1) |
|
2.1.10 Clustering by Finding Density Peaks |
|
|
22 | (1) |
|
2.1.11 Adaptive Resonance Theory |
|
|
22 | (1) |
|
2.2 Semi-Supervised Clustering |
|
|
23 | (1) |
|
2.2.1 Group Label Constraint |
|
|
23 | (1) |
|
2.2.2 Pairwise Label Constraint |
|
|
24 | (1) |
|
2.3 Heterogeneous Data Co-Clustering |
|
|
24 | (4) |
|
2.3.1 Graph Theoretic Models |
|
|
24 | (2) |
|
2.3.2 Non-Negative Matrix Factorization Models |
|
|
26 | (1) |
|
2.3.3 Markov Random Field Model |
|
|
26 | (1) |
|
2.3.4 Multi-view Clustering Models |
|
|
27 | (1) |
|
2.3.5 Aggregation-Based Models |
|
|
27 | (1) |
|
2.3.6 Fusion Adaptive Resonance Theory |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.4.1 Incremental Learning Strategies |
|
|
28 | (1) |
|
2.4.2 Online Learning Strategies |
|
|
28 | (1) |
|
2.5 Automated Data Cluster Recognition |
|
|
29 | (2) |
|
2.5.1 Cluster Tendency Analysis |
|
|
29 | (1) |
|
2.5.2 Posterior Cluster Validation Approach |
|
|
30 | (1) |
|
2.5.3 Algorithms Without a Pre-defined Number of Clusters |
|
|
30 | (1) |
|
2.6 Social Media Mining and Related Clustering Techniques |
|
|
31 | (14) |
|
2.6.1 Web Image Organization |
|
|
32 | (1) |
|
2.6.2 Multimodal Social Information Fusion |
|
|
33 | (1) |
|
2.6.3 User Community Detection in Social Networks |
|
|
33 | (1) |
|
2.6.4 User Sentiment Analysis |
|
|
34 | (1) |
|
2.6.5 Event Detection in Social Networks |
|
|
34 | (1) |
|
2.6.6 Community Question Answering |
|
|
35 | (1) |
|
2.6.7 Social Media Data Indexing and Retrieval |
|
|
35 | (1) |
|
2.6.8 Multifaceted Recommendation in Social Networks |
|
|
36 | (1) |
|
|
37 | (8) |
|
3 Adaptive Resonance Theory (ART) for Social Media Analytics |
|
|
45 | (48) |
|
|
45 | (3) |
|
3.1.1 Clustering Algorithm of Fuzzy ART |
|
|
45 | (2) |
|
|
47 | (1) |
|
3.2 Geometric Interpretation of Fuzzy ART |
|
|
48 | (7) |
|
3.2.1 Complement Coding in Fuzzy ART |
|
|
48 | (2) |
|
3.2.2 Vigilance Region (VR) |
|
|
50 | (3) |
|
3.2.3 Modeling Clustering Dynamics of Fuzzy ART Using VRs |
|
|
53 | (1) |
|
|
54 | (1) |
|
3.3 Vigilance Adaptation ARTs (VA-ARTs) for Automated Parameter Adaptation |
|
|
55 | (16) |
|
3.3.1 Activation Maximization Rule |
|
|
56 | (1) |
|
3.3.2 Confliction Minimization Rule |
|
|
57 | (1) |
|
3.3.3 Hybrid Integration of AMR and CMR |
|
|
58 | (1) |
|
3.3.4 Time Complexity Analysis |
|
|
59 | (1) |
|
|
60 | (11) |
|
3.4 User Preference Incorporation in Fuzzy ART |
|
|
71 | (2) |
|
3.4.1 General Architecture |
|
|
71 | (1) |
|
3.4.2 Geometric Interpretation |
|
|
72 | (1) |
|
3.5 Probabilistic ART for Short Text Clustering |
|
|
73 | (3) |
|
3.5.1 Procedures of Probabilistic ART |
|
|
74 | (1) |
|
3.5.2 Probabilistic Learning for Prototype Modeling |
|
|
75 | (1) |
|
3.6 Generalized Heterogeneous Fusion ART (GHF-ART) for Heterogeneous Data Co-Clustering |
|
|
76 | (6) |
|
3.6.1 General Architecture |
|
|
77 | (1) |
|
3.6.2 Clustering Procedures |
|
|
78 | (1) |
|
3.6.3 Robustness Measure for Feature Modality Weighting |
|
|
79 | (2) |
|
3.6.4 Time Complexity Analysis |
|
|
81 | (1) |
|
3.7 Online Multimodal Co-indexing ART (OMC-ART) for Streaming Multimedia Data Indexing |
|
|
82 | (4) |
|
|
82 | (1) |
|
3.7.2 Online Normalization of Features |
|
|
83 | (2) |
|
3.7.3 Salient Feature Discovery for Generating Indexing Base of Data |
|
|
85 | (1) |
|
3.7.4 Time Complexity Analysis |
|
|
86 | (1) |
|
|
86 | (7) |
|
|
88 | (5) |
|
|
|
4 Personalized Web Image Organization |
|
|
93 | (18) |
|
|
93 | (2) |
|
4.2 Problem Statement and Formulation |
|
|
95 | (1) |
|
4.3 Personalized Hierarchical Theme-Based Clustering (PHTC) |
|
|
95 | (7) |
|
|
95 | (1) |
|
4.3.2 PF-ART for Clustering Surrounding Text |
|
|
96 | (3) |
|
4.3.3 Semantic Hierarchy Generation |
|
|
99 | (3) |
|
|
102 | (6) |
|
4.4.1 Evaluation Measures |
|
|
102 | (1) |
|
|
103 | (3) |
|
|
106 | (2) |
|
|
108 | (3) |
|
|
109 | (2) |
|
5 Socially-Enriched Multimedia Data Co-clustering |
|
|
111 | (26) |
|
|
111 | (2) |
|
5.2 Problem Statement and Formulation |
|
|
113 | (1) |
|
5.3 GHF-ART for Multimodal Data Fusion and Analysis |
|
|
114 | (6) |
|
|
115 | (1) |
|
|
116 | (1) |
|
5.3.3 Learning Strategies for Multimodal Features |
|
|
117 | (1) |
|
5.3.4 Self-Adaptive Parameter Tuning |
|
|
118 | (1) |
|
5.3.5 Time Complexity Comparison |
|
|
119 | (1) |
|
|
120 | (13) |
|
|
120 | (8) |
|
|
128 | (3) |
|
5.4.3 20 Newsgroups Dataset |
|
|
131 | (2) |
|
|
133 | (4) |
|
|
134 | (3) |
|
6 Community Discovery in Heterogeneous Social Networks |
|
|
137 | (18) |
|
|
137 | (2) |
|
6.2 Problem Statement and Formulation |
|
|
139 | (1) |
|
6.3 GHF-ART for Clustering Heterogeneous Social Links |
|
|
139 | (4) |
|
6.3.1 Heterogeneous Link Representation |
|
|
139 | (2) |
|
6.3.2 Heterogeneous Link Fusion for Pattern Similarity Measure |
|
|
141 | (1) |
|
6.3.3 Learning from Heterogeneous Links |
|
|
141 | (1) |
|
6.3.4 Adaptive Weighting of Heterogeneous Links |
|
|
142 | (1) |
|
6.3.5 Computational Complexity Analysis |
|
|
143 | (1) |
|
|
143 | (9) |
|
|
144 | (4) |
|
6.4.2 BlogCatalog Dataset |
|
|
148 | (4) |
|
|
152 | (3) |
|
|
154 | (1) |
|
7 Online Multimodal Co-indexing and Retrieval of Social Media Data |
|
|
155 | (20) |
|
|
156 | (1) |
|
7.2 Problem Statement and Formulation |
|
|
157 | (1) |
|
7.3 OMC-ART for Multimodal Data Co-indexing and Retrieval |
|
|
158 | (5) |
|
7.3.1 OMC-ART for Online Co-indexing of Multimodal Data |
|
|
159 | (3) |
|
7.3.2 Fast Ranking for Multimodal Queries |
|
|
162 | (1) |
|
7.3.3 Computational Complexity Analysis |
|
|
163 | (1) |
|
|
163 | (6) |
|
|
163 | (1) |
|
7.4.2 Evaluation Measures |
|
|
164 | (1) |
|
7.4.3 Parameter Selection |
|
|
164 | (1) |
|
7.4.4 Performance Comparison |
|
|
165 | (2) |
|
7.4.5 Efficiency Analysis |
|
|
167 | (2) |
|
7.5 Real-World Practice: Multimodal E-Commerce Product Search Engine |
|
|
169 | (4) |
|
7.5.1 Architecture Overview |
|
|
169 | (1) |
|
7.5.2 Prototype System Implementation |
|
|
170 | (1) |
|
7.5.3 Analysis with Real-World E-Commerce Product Data |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
173 | (2) |
|
|
175 | (6) |
|
|
175 | (3) |
|
8.2 Prospective Discussion |
|
|
178 | (3) |
|
|
179 | (2) |
Index |
|
181 | |