Muutke küpsiste eelistusi

E-raamat: Advanced Analysis and Design for Fire Safety of Steel Structures

  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions.

The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges the information gap between fire safety engineers, structural engineers and building inspectors, and will be of significant interest to architects, code officials, building designers and fire fighters.

Dr. Guoqiang Li is a Professor at the College of Civil Engineering of Tongji University, China; Dr. Peijun Wang is an Associate Professor at the School of Civil Engineering of Shandong University, China.

1 Introduction
1(10)
1.1 Damage to Steel Structures Caused by Fire
1(1)
1.1.1 Global Collapse of Steel Structures in Fire
1(1)
1.1.2 Damage to Structural Components by Fire
1(1)
1.2 Requirements for Fire Resistance of Steel Structures
2(4)
1.2.1 Ultimate Limit State of Structures in a Fire
2(3)
1.2.2 Load Bearing Capacity Criteria
5(1)
1.2.3 Fire-Resistance Duration Demands
5(1)
1.3 Approach for Determining Fire-Resistance of Steel Structures
6(5)
1.3.1 Experimental Approach
6(1)
1.3.2 Analytical Approach
7(1)
References
8(3)
2 Fire in Buildings
11(26)
2.1 Basic Concepts
11(2)
2.1.1 Fire Load
11(1)
2.1.2 Heat Released Rate
12(1)
2.2 Compartment Fire
13(9)
2.2.1 Development of Compartment Fire
13(2)
2.2.2 Heat Release Model of Fire before Flashover
15(1)
2.2.3 Conditions Necessary for Flashover
15(1)
2.2.4 Heat Release Rate of the Fire after Flashover
16(1)
2.2.5 Modeling of Compartment Fire
17(1)
2.2.6 Empirical Modeling of Compartment Fire
18(4)
2.3 Large Space Building Fire
22(9)
2.3.1 Characteristics of Large Space Building
22(1)
2.3.2 Characteristics of Large Space Building Fire
22(1)
2.3.3 Simulation of Large Space Building Fire using Zone Model
23(4)
2.3.4 Characteristics of Large Space Building Fire
27(4)
2.4 Standard Fire and Equivalent Exposure Time
31(6)
2.4.1 Standard Fire
31(1)
2.4.2 Equivalent Exposure Time
32(2)
References
34(3)
3 Properties of Steel at Elevated Temperatures
37(30)
3.1 Thermal Properties of Structural Steel at Elevated Temperatures
37(3)
3.1.1 Conductivity
37(1)
3.1.2 Specific Heat
38(1)
3.1.3 Density
39(1)
3.2 Mechanical Properties of Structural Steel at High Temperature
40(8)
3.2.1 Test Regimes
40(1)
3.2.2 Definition of Yield Strength at High Temperature
41(1)
3.2.3 Mechanical Properties of Structural Steel at High Temperatures
42(1)
3.2.4 Yield Strength and Elastic Modulus of Fire-Resistant Steel at High Temperatures
43(5)
3.2.5 Stress-Strain Relationship of Normal Strength Structural Steel and Fire-Resistant Steel at Elevated Temperatures
48(1)
3.3 Mechanical Properties of High Strength Steel at High Temperatures
48(6)
3.3.1 High Strength Bolt
48(2)
3.3.2 High Strength Cable
50(4)
3.4 Properties of Stainless Steel at High Temperatures
54(13)
3.4.1 Thermal Properties of Stainless Steel
54(1)
3.4.2 Mechanical Properties of Stainless Steel at High Temperatures
54(10)
References
64(3)
4 Temperature Elevations of Structural Steel Components Exposed to Fire
67(26)
4.1 Laws of Heat Transfer
67(2)
4.1.1 Heat Transfer in Structural Members
67(1)
4.1.2 Heat Transfer between Hot Smoke and a Structural Member
68(1)
4.2 Practical Calculation Method for Temperature Elevation of Structural Members
69(10)
4.2.1 Calculating Model
69(1)
4.2.2 Temperature Elevation of Structural Component with Uniformly Distributed Temperature
70(9)
4.2.3 Temperature of Structural Component with Non-Uniformly Distributed Temperature
79(1)
4.3 Practical Calculation Method for Temperature Evolution of Structural Members Exposed to a Large Space Building Fire
79(10)
4.3.1 Effects of Flame Radiation on Temperature Elevation of Un-Protected Steel Structural Components
80(6)
4.3.2 Parametric Study
86(2)
4.3.3 Limit Value of Flame Radiation
88(1)
4.4 Example
89(4)
References
90(3)
5 Fire-Resistance of Isolated Flexural Structural Components
93(22)
5.1 Load-bearing Capacity of a Flexural Steel Component at High Temperatures
93(6)
5.1.1 Strength of a Flexural Steel Component at High Temperatures
93(1)
5.1.2 Lateral Torsional Buckling Strength of a Flexural Steel Component at High Temperatures
93(2)
5.1.3 Critical Temperature of a Flexural Steel Component in Fire
95(1)
5.1.4 Example
96(3)
5.2 Fire-resistance of Flexural Steel-Concrete Composite Components
99(16)
5.2.1 Material Properties and Temperature Calculation of a Composite Beam
99(1)
5.2.2 Strength of a Composite Beam at High Temperature
100(1)
5.2.3 Critical Temperature of a Composite Beam
101(1)
5.2.4 Parametric Study
102(4)
5.2.5 Simplified Approach for the Fire Resistance Design of Composite Beams
106(2)
5.2.6 Example and Comparison
108(2)
5.2.7 Experimental Validation
110(3)
References
113(2)
6 Fire-Resistance of Isolated Compressed Steel Components
115(16)
6.1 Fire Resistance of Axially Compressed Steel Components
115(7)
6.1.1 Load Bearing Capacity of Axially Compressed Steel Components
115(4)
6.1.2 Critical Temperature of an Axially Compressed Component
119(1)
6.1.3 Example
119(3)
6.2 Design Method for a Structural Component under the Combined Axial Force and Bending Moment
122(9)
6.2.1 Stability of a Structural Component under the Combined Axial Force and Bending Moment
122(1)
6.2.2 Cross-Sectional Strength of the Structural Component under the Combined Axial Force and Bending Moment at Elevated Temperatures
123(1)
6.2.3 Critical Temperature of the Structural Component Subjected to the Combined Axial Force and Bending Moment
123(2)
6.2.4 Example
125(4)
References
129(2)
7 Fire-Resistance of Restrained Flexural Steel Components
131(58)
7.1 Fire-Resistance of a Restrained Steel Beam
131(28)
7.1.1 Fire Test of Restrained Steel Beams
132(11)
7.1.2 Analysis and Design for Fire-Resistance of a Restrained Steel Beam
143(16)
7.2 Fire Resistance of Steel-Concrete Composite Beams
159(30)
7.2.1 Fire Test on Restrained Steel-Concrete Composite Beams
159(10)
7.2.2 Analysis of Restrained Steel-Concrete Composite Beams
169(7)
7.2.3 Practical Design Method for a Restrained Steel-Concrete Composite Beam
176(2)
7.2.4 Axial Force in the Composite Beam
178(6)
References
184(5)
8 Fire-Resistance of Restrained Steel Columns
189(56)
8.1 Fire Test on Restrained Steel Columns with Axial and Rotational Restraint
189(13)
8.1.1 Test Set-Up and Test Specimen
190(2)
8.1.2 Displacement and Temperature Acquisition
192(1)
8.1.3 Test Schedule
193(1)
8.1.4 Test Results
193(7)
8.1.5 Numerical Simulation of the Fire Test
200(2)
8.2 Parametric Study of Restrained Steel Columns in a Fire
202(12)
8.2.1 Parameters
204(2)
8.2.2 Parametric Study on a Restrained Steel Column under Axial Load Only in a Fire
206(1)
8.2.3 Parametric Study of a Restrained Column under Combined Axial Load and Bending Moment in a Fire
207(7)
8.3 Simplified Design Method for Restrained Steel Columns in a Fire
214(17)
8.3.1 Design Method for Restrained Columns under Axial Load Only in a Fire
217(5)
8.3.2 Design Methods for the Restrained Columns under Combined Axial Load and Bending Moment
222(9)
8.4 Fire-Resistance of Restrained Columns with Non-Uniform Temperature Distribution
231(14)
8.4.1 Test Arrangement and Instrumentation
232(1)
8.4.2 Temperature Distribution
233(1)
8.4.3 Continuum Model
234(4)
8.4.4 Experiment Study
238(3)
References
241(4)
9 Fire-Resistance of Composite Concrete Slabs
245(36)
9.1 Fire-resistance Design Method for Composite Concrete Slabs Based on Small Deflection Theory
245(7)
9.1.1 Studied Slabs
245(2)
9.1.2 Parametric Studies
247(3)
9.1.3 Simplified Design Method
250(2)
9.1.4 Verification by the Fire Resistance Test
252(1)
9.2 Fire Resistance Design Method for the Composite Slab Considering Membrane Action
252(29)
9.2.1 Development of the Membrane Action of a Composite Slab in a Fire
252(4)
9.2.2 Fire Test on the Composite Slab
256(12)
9.2.3 Analysis of the Composite Slab in Consideration of the Membrane Action in a Fire
268(11)
References
279(2)
10 Analysis of Steel Moment-Resistant Frames Subjected to a Fire
281(18)
10.1 Element for Analysis
282(5)
10.1.1 Properties of the Elemental Cross-Section
282(1)
10.1.2 Location of the Neutral Axis in an Elastic State
283(1)
10.1.3 Equivalent Axial Stiffness
283(1)
10.1.4 Equivalent Bending Stiffness in an Elastic State
284(1)
10.1.5 Initial Yielding Moment
284(1)
10.1.6 Location of the Neutral Axis in Total Plastic State
284(1)
10.1.7 Plastic Moment
285(1)
10.1.8 Stiffness of Element
285(2)
10.2 Thermal Force of Element
287(1)
10.3 Structural Analysis
287(3)
10.4 Experimental and Theoretical Prediction
290(9)
References
297(2)
11 Analysis and Design of Large Space Steel Structure Buildings Subjected to a Fire
299(34)
11.1 Practical Analysis Approach for Steel Portal Frames in a Fire
299(10)
11.1.1 Finite Element Modeling and Assumptions
299(2)
11.1.2 Parameters Influencing the Fire Resistance of a Steel Portal Frame
301(4)
11.1.3 Estimation of the Critical Temperature of a Steel Portal Frame
305(3)
11.1.4 Example
308(1)
11.1.5 Fire Protection
309(1)
11.2 Critical Temperature of a Square Pyramid Grid Structure in a Fire
309(7)
11.2.1 Parameters of Grid Structures
309(1)
11.2.2 Definition of Parameters
310(2)
11.2.3 Critical Temperature of the Structural Component
312(1)
11.2.4 Critical Temperature of the Grid Structure in Uniform Temperature Field
312(2)
11.2.5 Critical Temperatures of the Grid Structure in a Non-Uniform Temperature Field
314(2)
11.2.6 Conditions for a Grid Structure with no Need of Fire Protection
316(1)
11.3 Continuous Approach for Cable-Net Structural Analysis in a Fire
316(17)
11.3.1 Behavior of a Single Cable in a Fire
317(6)
11.3.2 Behavior of the Cable-Net Structure in a Fire
323(4)
11.3.3 Simplified Method for the Critical Temperature of a Cable-Net Structure
327(2)
11.3.4 Critical Temperature of a Cable-Net Structure with Elliptical or Diamond Plan View
329(1)
11.3.5 Critical Temperature of the Cable-Net Structure with Parabolic Plan View
329(2)
References
331(2)
Appendix A Parameters for Calculating the Smoke Temperature in Large Space Building Fire 333(8)
Appendix B Stiffness Matrixes of Beam-Column Elements 341(2)
Appendix C Height of the Flame 343(2)
Appendix D Critical Temperatures of Composite Beams 345(4)
Appendix E Critical Temperatures of a Steel Column Subjected to Combined Axial Force and Bending Moment 349(2)
Appendix F Maximum Fire Power at Which a Grid Structure Does not Need Fire Protection 351(4)
Index 355