Muutke küpsiste eelistusi

E-raamat: Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop, AALTD 2019, Wurzburg, Germany, September 20, 2019, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019. The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data.





 

Robust Functional Regression for Outlier Detection.- Transform Learning Based Function Approximation for Regression and Forecasting.- Proactive Fiber Break Detection based on Quaternion Time Series and Automatic Variable Selection from Relational Data.- A fully automated periodicity detection in time series.- Conditional Forecasting of Water Level Time Series with RNNs.- Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories.- Localized Random Shapelets.- Feature-Based Gait Pattern Classification for a Robotic Walking Frame.- How to detect novelty in textual data streams? A comparative study of existing methods.- Seq2VAR: multivariate time series representation with relational neural networks and linear autoregressive model.- Modelling Patient Sequences for Rare Disease Detection with Semi-supervised Generative Adversarial Nets.- Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems.- Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets using Deep Learning.- Learning Stochastic Dynamical Systems via Bridge Sampling.- Quantifying Quality of Actions Using Wearable Sensor.- An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis.