Muutke küpsiste eelistusi

E-raamat: Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications

(University of Arizona), (University of Technology Sydney, Australia)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Oct-2021
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119712923
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 139,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Oct-2021
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119712923
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Whilst 5G standards are in solid shape, the telecommunications industry faces tremendous engineering challenges in designing and deploying antennas which will not only deliver the expected 5G performance, but also can be installed in collocation with 4Gantennas. It is expected that analogue antenna arrays will play a major part in enabling the cost-effective roll-out of 5G networks. Moreover, it is expected many 6G antennas will be mounted on airborne and spaceborne platforms. The nature of such space,air, and terrestrial integrated communications networks poses new challenges and demands for antennas with characteristics such as high gain, individually scannable multi-beams, immunity to interference, reconfigurability, and conformability to all platforms."--

Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications

Reviews advances in the design and deployment of antenna arrays for future generations of wireless communication systems, offering new solutions for the telecommunications industry

Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications addresses the challenges in designing and deploying antennas and antenna arrays which deliver 6G and beyond performance with high energy efficiency and possess the capability of being immune to interference caused by different systems mounted on the same platforms. This timely and authoritative volume presents innovative solutions for developing integrated communications networks of high-gain, individually-scannable, multi-beam antennas that are reconfigurable and conformable to all platforms, thus enabling the evolving integrated land, air and space communications networks.

The text begins with an up-to-date discussion of the engineering issues facing future wireless communications systems, followed by a detailed discussion of different beamforming networks for multi-beam antennas. Subsequent chapters address problems of 4G/5G antenna collocation, discuss differentially-fed antenna arrays, explore conformal transmit arrays for airborne platforms, and present latest results on fixed frequency beam scanning leaky wave antennas as well as various analogue beam synthesizing strategies. Based primarily on the authors’ extensive work in the field, including original research never before published, this important new volume:

  • Reviews multi-beam feed networks, array decoupling and de-scattering methods
  • Provides a systematic study on differentially fed antenna arrays that are resistant to interference caused by future multifunctional/multi-generation systems
  • Features previously unpublished material on conformal transmit arrays based on Huygen’s metasufaces and reconfigurable leaky wave antennas
  • Includes novel algorithms for synthesizing and optimizing thinned massive arrays, conformal arrays, frequency invariant arrays, and other future arrays

Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications is an invaluable resource for antenna engineers and researchers, as well as graduate and senior undergraduate students in the field.

Author Biographies ix
Acknowledgments xi
1 A Perspective of Antennas for 5G and 6G
1(22)
1.1 5G Requirements of Antenna Arrays
1(4)
1.1.1 Array Characteristics
1(2)
1.1.2 Frequency Bands
3(1)
1.1.3 Component Integration and Antennas-in-Package (AiP)
3(2)
1.2 6G and Its Antenna Requirements
5(1)
1.3 From Digital to Hybrid Multiple Beamforming
6(5)
1.3.1 Digital Beamforming
7(1)
1.3.2 Hybrid Beamforming
8(3)
1.4 Analog Multiple Beamforming
11(3)
1.4.1 Butler Matrix
12(1)
1.4.2 Luneburg Lenses
13(1)
1.5 Millimeter-Wave Antennas
14(1)
1.6 THz Antennas
15(1)
1.7 Lens Antennas
16(2)
1.8 SIMO and MIMO Multi-Beam Antennas
18(1)
1.9 In-Band Full Duplex Antennas
19(1)
1.10 Conclusions
20(3)
References
20(3)
2 Millimeter-Wave Beamforming Networks
23(26)
2.1 Circuit-Type BFNs: SIW-Based Butler and Nolen Matrixes
23(13)
2.1.1 Butler Matrix for One-Dimensional Multi-Beam Arrays
23(4)
2.1.2 Butler Matrix for a 1-D Multi-Beam Array with Low Sidelobes
27(2)
2.1.3 Butler Matrix for 2-D Multi-Beam Arrays
29(5)
2.1.4 Nolen Matrix
34(2)
2.2 Quasi Optical BFNs: Rotman Lens and Reflectors
36(9)
2.2.1 Rotman Lens
36(4)
2.2.2 Reflectors
40(1)
2.2.2.1 Single Reflectors
41(3)
2.2.2.2 Dual Reflectors
44(1)
2.3 Conclusions
45(4)
References
46(3)
3 Decoupling Methods for Antenna Arrays
49(40)
3.1 Electromagnetic Bandgap Structures
49(2)
3.2 Defected Ground Structures
51(3)
3.3 Neutralization Lines
54(4)
3.4 Array-Antenna Decoupling Surfaces
58(4)
3.5 Metamaterial Structures
62(8)
3.6 Parasitic Resonators
70(11)
3.7 Polarization Decoupling
81(2)
3.8 Conclusions
83(6)
References
84(5)
4 De-scattering Methods for Coexistent Antenna Arrays
89(46)
4.1 De-scattering vs. Decoupling in Coexistent Antenna Arrays
89(3)
4.2 Mantle Cloak De-scattering
92(3)
4.3 Lumped-Choke De-scattering
95(18)
4.4 Distributed-Choke De-scattering
113(17)
4.5 Mitigating the Effect of HB Antennas on LB Antennas
130(2)
4.6 Conclusions
132(3)
References
132(3)
5 Differential-Fed Antenna Arrays
135(34)
5.1 Differential Systems
115(22)
5.2 Differential-Fed Antenna Elements
137(9)
5.2.1 Linearly Polarized Differential Antennas
138(5)
5.2.2 Circularly Polarized Differential Antennas
143(3)
5.3 Differential-Fed Antenna Arrays
146(1)
5.3.1 Balanced Power Dividers
147(4)
5.3.2 Differential-Fed Antenna Arrays Employing Balanced Power Dividers
151(10)
5.4 Differential-Fed Multi-Beam Antennas
161(4)
5.5 Conclusions
165(4)
References
166(3)
6 Conformal Transmitarrays
169(1)
6.1 Conformal Transmitarray Challenges
169(2)
6.1.1 Ultrathin Element with High Transmission Efficiency
169(2)
6.1.2 Beam Scanning and Multi-Beam Operation
171(1)
6.2 Conformal Transmitarrays Employing Triple-Layer Elements
171(8)
6.2.1 Element Designs
171(2)
6.2.2 Conformal Transmitarray Design
173(6)
6.3 Beam Scanning Conformal Transmitarrays
179(6)
6.3.1 Scanning Mechanism
180(2)
6.3.2 Experimental Results
182(1)
6.3.3 Limits of the Beam Scanning Range
183(2)
6.4 Conformal Transmitarray Employing Ultrathin Dual-Layer Huygens Elements
185(13)
6.4.1 Huygens Surface Theory
186(3)
6.4.2 Ultrathin Dual-Layer Huygens Elements
189(5)
6.4.3 Conformal Transmitarray Design
194(4)
6.5 Elliptically Conformal Multi-Beam Transmitarray with Wide-Angle Scanning Ability
198(11)
6.5.1 Multi-Beam Transmitarray Design
200(4)
6.5.2 Concept Verification Through Simulation
204(5)
6.6 Conclusions
209(4)
References
209(4)
7 Frequency-Independent Beam Scanning Leaky-Wave Antennas
213(62)
7.1 Reconfigurable Fabry-Perot (FP) LWA
213(9)
7.1.1 Analysis of 1-D Fabry-Perot LWA
214(2)
7.1.2 Effect of Cj on the Leaky-Mode Dispersion Curves
216(2)
7.1.3 Optimization of the FP Cavity Height
218(1)
7.1.4 Antenna Prototype and Measured Results
219(3)
7.2 Period-Reconfigurable SIW-Based LWA
222(18)
7.2.1 Antenna Configuration and Element Design
223(3)
7.2.2 Suppression of Higher-Order Harmonics
226(4)
7.2.3 Element Activation States and Scanning Properties
230(3)
7.2.4 Results and Discussion
233(1)
7.2.4.1 Element Pattern and Antenna Prototype
233(3)
7.2.4.2 Radiation Patterns and S-Parameters
236(4)
7.3 Reconfigurable Composite Right/Left-Handed LWA
240(16)
7.3.1 Parametric Analysis
242(3)
7.3.2 Initial Frequency-Scanning CRLH LWA
245(2)
7.3.3 Reconfigurable Fixed-Frequency Scanning CRLH LWA
247(1)
7.3.3.1 Antenna Configuration
247(2)
7.3.3.2 DC Biasing Strategy
249(1)
7.3.3.3 Simulation Results
250(2)
7.3.3.4 Measured Results
252(2)
7.3.3.5 Discussions
254(2)
7.4 Two-Dimensional Multi-Beam LWA
256(11)
7.4.1 Antenna Design
257(1)
7.4.1.1 Horn BFN
257(1)
7.4.1.2 Phase-Compensation Method
258(1)
7.4.1.3 Phase Shifter Based on Phase Inverter
259(1)
7.4.1.4 Fixed-Frequency Beam Scanning Leaky-Wave Antenna
260(4)
7.4.2 Performance and Discussion
264(3)
7.5 Conclusions
267(8)
References
270(5)
8 Beam Pattern Synthesis of Analog Arrays
275(36)
8.1 Thinned Antenna Arrays
275(8)
8.1.1 Modified Iterative FFT
276(3)
8.1.2 Examples of Thinned Arrays
279(4)
8.2 Arrays with Rotated Elements
283(11)
8.2.1 The Pattern of an Element-Rotated Array
283(2)
8.2.2 Vectorial Shaped Pattern Synthesis Using Joint Rotation/Phase Optimization
285(2)
8.2.3 The Algorithm
287(1)
8.2.4 Examples of Pattern Synthesis Based on Element Rotation and Phase
288(1)
8.2.4.1 Flat-Top Pattern Synthesis with a Rotated U-Slot Loaded Microstrip Antenna Array
288(2)
8.2.4.2 Circular Flat-Top Pattern Synthesis for a Planar Array with Rotated Cavity-Backed Patch Antennas
290(4)
8.3 Arrays with Tracking Abilities Employing Sum and Difference Patterns
294(7)
8.3.1 Nonuniformly Spaced Dipole-Rotated Linear Array
295(2)
8.3.2 PSO-Based Element Rotation and Position Optimization
297(1)
8.3.3 Examples
298(1)
8.3.3.1 Synthesis of a 56-Element Sparse Linear Dipole Array
298(2)
8.3.3.2 Synthesizing Sum and Difference Patterns with Multi-Region SLL and XPL Constraints
300(1)
8.4 Synthesis of SIMO Arrays
301(7)
8.4.1 Analog Dual-Beam Antenna Arrays with Linear Phase Distribution
302(1)
8.4.2 Phase-Only Optimization of Multi-Beam Arrays
303(3)
8.4.3 The Algorithm
306(1)
8.4.4 Simulation Examples
306(2)
8.5 Conclusions
308(3)
References
308(3)
Index 311
Y. Jay Guo, PhD, is the Director of the Global Big Data Technologies Centre and a Distinguished Professor at the University of Technology Sydney, Australia. He has over thirty years of academic, industrial and CSIRO experience. He holds 26 international patents, and is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Australian Academy of Technology and Engineering (ATSE), and the Institute of Engineering and Technology (IET). He is the author of Ground-Based Wireless Positioning and more than 550 research papers.

Richard W. Ziolkowski, PhD, is a Distinguished Professor in the Global Big Data Technologies Centre at the University of Technology Sydney, Australia, and a Professor Emeritus at the University of Arizona, USA. He is a Life Fellow of the IEEE and a Fellow of the Optical Society of America and the American Physical Society. He was the recipient of the 2019 IEEE Electromagnetics Award and was the 2005 President of the IEEE Antennas and Propagation Society. He was the 2014-2015 US Fulbright Distinguished Chair in Advanced Science and Technology sponsored by the Australian Defence Science and Technology Organization (DSTO). He is the co-editor of Metamaterials: Physics and Engineering Explorations.