Muutke küpsiste eelistusi

E-raamat: Advanced Computational Electromagnetic Methods

  • Formaat: 600 pages
  • Ilmumisaeg: 31-Jan-2015
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608078974
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 600 pages
  • Ilmumisaeg: 31-Jan-2015
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608078974
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The 12 chapters in this volume detail methods and applications in advanced computational electromagnetics (CEM). Engineers from North America, China, and Europe describe the use of spectral domain analysis to retrieve the absolute electric field magnitude and phase values in the near-field region of an antenna; a high-order finite difference time domain (FDTD) method; a general-purpose computing technique on a graphics processing unit to achieve higher performance of the FDTD method than a central processing unit for simulation of microwave circuits; recent FDTD advances for electromagnetic wave propagation in the ionosphere; the Phi coprocessor acceleration techniques in computational electromagnetic methods; domain decomposition methods for finite element analysis of large-scale electromagnetic problems; high-accuracy computations for electromagnetic integral equations; and a fast electromagnetic solver based on randomized pseudo-skeleton approximation. Other chapters cover computational electromagnetics for the evaluation of electromagnetic compatibility issues in multicomponent energy systems; the manipulation of electromagnetic waves based on new unique metamaterials; a time-domain integral equation method for transient problems; and stochastic modeling methods and computational electromagnetics as applied to human exposure assessment. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
Preface xv
1 Novelties Of Spectral Domain Analysis In Antenna Characterizations: Concept, Formulation, And Applications 1(82)
Joshua M. Kovitz
Yahya Rahmat-Samii
1.1 Introduction
1(4)
1.2 Antenna Radiation Analysis In The Spectral Domain
5(17)
1.2.1 From Maxwell's Equations To The Plane Wave Spectrum
6(4)
1.2.2 The Plane Wave Spectrum And The Fourier Transform
10(2)
1.2.3 Radiated Far Fields As A Spectrum Of Plane Waves
12(10)
1.3 Obtaining The Plane Wave Spectrum From Far-Field Patterns And Radiated Power
22(5)
1.3.1 Finding The True Far-Field Magnitudes
22(4)
1.3.2 Plane Wave Spectrum Retrieval From Far-Field Patterns
26(1)
1.4 Plane Wave Spectrum Computation Via Fast Fourier Transform
27(18)
1.4.1 Discretizing The Plane Wave Spectrum And The Electric Field Distribution
28(2)
1.4.2 Proper Normalization Of The Fast Fourier Transform
30(4)
1.4.3 The Sampling Theorem And Spectral Analysis
34(3)
1.4.4 Far-Field Sampling Rates
37(3)
1.4.5 Interpolating The Far Fields
40(4)
1.4.6 Subtle Issues When Implementing The FFT And iFFT Using Pre-Built Packages And Libraries
44(1)
1.5 Coordinate Transformations For Generalized Simulation And Measurement Systems
45(7)
1.6 Theoretical Validation Of Near-Field Prediction
52(12)
1.6.1 Rectangular Aperture Distribution
53(4)
1.6.2 Circular Aperture Distribution
57(3)
1.6.3 Axial Field Prediction Of The Uniform Circular Aperture
60(4)
1.7 Some Practical Examples
64(16)
1.7.1 A Symmetric Reflector Antenna
64(6)
1.7.2 A Symmetric Reflector Antenna With An Elliptical Projected Aperture
70(5)
1.7.3 Near-Field Prediction With Only Two Pattern Cuts
75(5)
References
80(3)
2 High-Order FDTD Methods 83(32)
Mohammed F. Hadi
Atef Z. Elsherbeni
2.1 Fourth Order Differences In FDTD Discrete Space
84(6)
2.2 Seamless Hybrid S24/FDTD Simulations
90(4)
2.3 Absorbing Boundary Conditions
94(5)
2.4 Point Current And Field Sources
99(2)
2.5 Plane Wave Sources
101(3)
2.6 PEC Modeling
104(2)
2.6.1 Planar PEC Boundaries
104(1)
2.6.2 Noncritical Curved PEC Models
104(1)
2.6.3 Critical Curved PEC Models
104(2)
2.7 Advanced Forms Of High-Order FDTD Algorithms
106(6)
2.7.1 The Finite Volumes-Based FV24 Algorithm
106(3)
2.7.2 High-Order Algorithms For Compact-FDTD Grids
109(3)
References
112(3)
3 GPU Acceleration Of FDTD Method For Simulation Of Microwave Circuits 115(32)
Veysel Demir
3.1 Introduction
115(1)
3.2 FDTD Code For Microwave Circuit Simulation
116(11)
3.2.1 Features Of The FDTD Code
116(2)
3.2.2 Input Parameters File
118(1)
3.2.3 Main Program Layout
119(2)
3.2.4 Field Updates
121(3)
3.2.5 Outputs Of The Program
124(3)
3.3 FDTD Code Using CUDA
127(15)
3.3.1 Performance Optimization
127(1)
3.3.2 Memory Accesses
128(1)
3.3.3 Preparation Of The GPU Device
129(4)
3.3.4 Thread To Cell Mapping
133(2)
3.3.5 The Time-Marching Loop
135(1)
3.3.6 Field Updates
136(3)
3.3.7 Source Updates And Output Calculations
139(3)
3.4 Numerical Results
142(1)
References
143(4)
4 Recent FDTD Advances For Electromagnetic Wave Propagation In The Ionosphere 147(28)
Alireza Samimi
Bach T. Nguyen
Jamesina J. Simpson
4.1 Introduction
147(2)
4.2 Current State Of The Art
149(2)
4.3 FDTD Earth-Ionosphere Model Overview
151(4)
4.3.1 FDTD Space Lattice
151(2)
4.3.2 Example Updating Algorithm For TM Grid Cells
153(2)
4.4 New Magnetized Ionospheric Plasma Algorithm
155(12)
4.4.1 Collisional Plasma Algorithm
156(2)
4.4.2 Two Example Validations
158(9)
4.4.3 Summary Of Performance
167(1)
4.5 Stochastic FDTD (S-FDTD)
167(4)
4.5.1 Overview
167(2)
4.5.2 Mean Field Equations
169(1)
4.5.3 Variance Field Equations
170(1)
4.6 Input To FDTD/S-FDTD Earth-Plamsa Ionosphere Models
171(1)
4.7 Conclusions
172(1)
References
172(3)
5 Phi Coprocessor Acceleration Techniques In Computational Electromagnetic Methods 175(52)
Wenhua Yu
Xiaoling Yang
Lei Zhao
5.1 Introduction
176(2)
5.2 Environment Requirements And Settings
178(21)
5.2.1 Hardware Configuration
178(2)
5.2.2 Software Configuration
180(8)
5.2.3 Compilation Environment
188(2)
5.2.4 Example Code For CPU And Xeon Phi Coprocessor
190(9)
5.3 Code Development
199(20)
5.3.1 Performance Optimization
199(5)
5.3.2 Memory Alignment
204(1)
5.3.3 Parallel FDTD Implementation
204(4)
5.3.4 Job Scheduling Strategy
208(3)
5.3.5 FDTD Code Development
211(4)
5.3.6 Matrix Multiplication
215(4)
5.4 Numerical Results
219(6)
References
225(2)
6 Domain Decomposition Methods For Finite Element Analysis Of Large-Scale Electromagnetic Problems 227(56)
Ming-Feng Xue
Jian-Ming Jin
6.1 FETI Methods With One And Two Lagrange Multipliers
229(6)
6.1.1 FETI Method With One Lagrange Multiplier
229(3)
6.1.2 FETI Method With Two Lagrange Multipliers
232(2)
6.1.3 Symbolic Formulation
234(1)
6.2 FETI-DP Methods With One And Two Lagrange Multipliers
235(8)
6.2.1 FETI-DP Method With One Lagrange Multiplier
236(3)
6.2.2 FETI-DP Method With Two Lagrange Multipliers
239(3)
6.2.3 Comparison Between FETI-DP Methods With One And Two Lagrange Multipliers
242(1)
6.3 LM-Based Nonconformal FETI-DP Method
243(4)
6.3.1 Nonconformal Interface And Conformal Corner Meshes
243(2)
6.3.2 Extension To Nonconformal Interface And Corner Meshes
245(2)
6.4 CE-Based Nonconformal FETI-DP Method
247(5)
6.4.1 Nonconformal Interface And Conformal Corner Meshes
247(4)
6.4.2 Extension To Nonconformal Interface And Corner Meshes
251(1)
6.4.3 Comparison Between The LM- And CE-Based FETI-DP Methods
251(1)
6.5 FETI-DP Method Enhanced By The Second-Order Transmission Condition
252(2)
6.6 Hybrid Nonconformal FETI/Conformal FETI-DP Method
254(2)
6.7 Numerical Examples
256(22)
6.7.1 Wave Propagation In Free Space
257(2)
6.7.2 Wave Propagation In PML Medium
259(4)
6.7.3 Vivaldi Antenna Array
263(3)
6.7.4 Vivaldi Antenna Array With A Large Scan Angle
266(3)
6.7.5 NRL Vivaldi Antenna Array With Radome
269(2)
6.7.6 Medium-Scale Two-Dimensional Microring Resonator
271(4)
6.7.7 Full-Scale Three-Dimensional Double-Microring Resonator
275(3)
6.8 Summary
278(1)
References
279(4)
7 High-Accuracy Computations For Electromagnetic Integral Equations 283(16)
Andrew F. Peterson
Malcolm M. Bibby
7.1 Normalized Residual Error
284(1)
7.2 High-Order Treatment Of Smooth Targets
285(2)
7.3 The Dipole Antenna
287(2)
7.4 High-Order Treatment Of Wedge Singularities
289(3)
7.5 High-Order Treatment Of Junctions
292(1)
7.6 Alternative Error Estimators
292(1)
7.7 Prospects For Controlled Accuracy Computations In Three-Dimensional Problems
293(2)
7.8 Summary
295(1)
References
295(4)
8 Fast Electromagnetic Solver Based On Randomized Pseudo-Skeleton Approximation 299(32)
Xianyang Zhu
8.1 Introduction
299(2)
8.2 Low Rank Property Of Submatrices Of Partitioned Impedance Matrix
301(3)
8.3 Partitioning Of The Computational Domain
304(3)
8.4 Low Rank Matrix Decomposition
307(9)
8.4.1 Singular Value Decomposition
307(2)
8.4.2 Randomized Projection Approach
309(1)
8.4.3 Adaptive Cross Approximation (ACA)
310(2)
8.4.4 Randomized Pseudo-Skeleton Approximation
312(4)
8.5 Low Rank Decomposition Of Multiple Right Sides
316(1)
8.6 Direct Solver Based On Block LU Decomposition
317(2)
8.7 Parallelization Via OpenMP And BLAS Library
319(1)
8.8 Numerical Examples
320(7)
8.8.1 Selection Of The Sample Numbers
320(1)
8.8.2 Accuracy Of The Randomized Pseudo-Skeleton Approximation
321(1)
8.8.3 Comparison With ACA
322(1)
8.8.4 RCS Of A PEC Sphere
323(1)
8.8.5 Multiple Monostatic Scattering Analysis Of An Airplane Model
324(2)
8.8.6 Speed-Up Of The Parallel Implementation
326(1)
8.9 Summary
327(1)
References
328(3)
9 Computational Electromagnetics For The Evaluation Of EMC Issues In Multicomponent Energy Systems 331(80)
Osama A. Mohammed
Mohammadreza R. Barzegaran
9.1 Introduction
331(2)
9.2 Physics-Based Modeling For The Analysis Of The Machine Drive
333(5)
9.2.1 Multiscale Problems
333(2)
9.2.2 Numerical Virtual Prototyping
335(3)
9.3 Equivalent Source Modeling
338(52)
9.3.1 Introduction Motor
340(16)
9.3.2 DC Motor
356(8)
9.3.3 Synchronous Generator
364(3)
9.3.4 Cable Sets
367(8)
9.3.5 Coupling Of Machines
375(2)
9.3.6 Whole System Setup
377(4)
9.3.7 Generalization Of The Equivalent Source Model
381(9)
9.4 Power Converters
390(11)
9.4.1 Modeling Approach
390(3)
9.4.2 Simulation And Experiment
393(6)
9.4.3 Applications Of The Frequency Response Analysis Of The Stray Field
399(2)
9.5 High-Frequency Equivalent Source Modeling
401(4)
9.6 Optimization Of Power Electronic Converters Using Physics-Based Models
405(2)
9.7 Summary
407(1)
References
408(3)
10 Manipulation Of Electromagnetic Waves Based On New Unique Metamaterials: Theory And Applications 411(44)
Qun Wu
Jiahui Fu
Fanyi Meng
Kuang Zhang
Guohui Yang
10.1 Introduction
411(1)
10.2 Theory Of Transform Optics And Applications
412(15)
10.2.1 Theory Of Transform Optics
412(2)
10.2.2 Invisibility Cloak Based On Transform Optics
414(3)
10.2.3 Electromagnetic Concentrator Based On The Transform Optics
417(3)
10.2.4 Reflectionless Waveguide Connector Based On Transform Optics
420(3)
10.2.5 Multibeam Antenna Based On Transform Optics
423(4)
10.3 A Detached Zero Index Metamaterial Lens For Antenna Gain Enhancement
427(8)
10.3.1 Design And Analysis Of Detached ZIML
429(2)
10.3.2 Fabrication, Simulation, And Test Of ZIML
431(4)
10.4 Automatic Design Of Broadband Gradient Index Metamaterial Lens For Gain Enhancement Of Circularly Polarized Antennas
435(14)
10.4.1 Automatic Design Method Of GRIN Metamaterial Lens
436(5)
10.4.2 Numerical Simulations
441(4)
10.4.3 Fabrication And Measurement
445(4)
10.5 Conclusions
449(1)
References
450(5)
11 Time-Domain Integral Equation Method For Transient Problems 455(64)
Mingyao Xia
11.1 Introduction
455(2)
11.2 Derivations Of Time-Domain Integral Equations
457(6)
11.2.1 Integral Equations For The 3-D PEC Object
457(2)
11.2.2 Integral Equations For 1-D And 2-D PEC Structures
459(2)
11.2.3 Integral Equations For The 3-D Dielectric Body
461(2)
11.3 Discretization Of Governing Equations
463(16)
11.3.1 Discretization For The Wire Problem
464(5)
11.3.2 Discretization For The 2-D Problem
469(2)
11.3.3 Discretization For The 3-D Conducting Body
471(6)
11.3.4 Discretization For The 3-D Dielectric Body
477(2)
11.4 Evaluation Of Matrix Elements
479(14)
11.4.1 Matrix Setup For The Wire Problem
479(5)
11.4.2 Matrix Setup For The 3-D Problem
484(4)
11.4.3 Matrix Setup For The 2-D Problems
488(5)
11.5 Extension To Moving Objects
493(8)
11.5.1 Transforms Of Space Time And Fields
494(5)
11.5.2 Simulation Process
499(2)
11.6 Numerical Implementations
501(14)
11.6.1 Numerical Examples For Wire Problems
503(3)
11.6.2 Numerical Examples For The 2-D Structures
506(2)
11.6.3 Numerical Examples For The 3-D Geometries
508(4)
11.6.4 Numerical Examples For Moving Objects
512(3)
11.7 Summary
515(1)
References
515(4)
12 Statistical Methods And Computational Electromagnetics Applied To Human Exposure Assessment 519(40)
Joe Wiart
12.1 Introduction
519(1)
12.2 Exposure Assessment Using FDTD And The Challenge Of Variability
520(6)
12.2.1 Present Exposure Assessment Using FDTD
520(4)
12.2.2 Uncertainty And Variability Management
524(2)
12.3 Metamodel Model For Uncertainty Propagation
526(1)
12.4 Design Of Experiments
527(3)
12.5 Surrogate Model Validation
530(2)
12.6 Model Construction And Regression
532(2)
12.7 Polynomial Chaos Expansions
534(16)
12.7.1 Introduction To Polynomial Chaos Expansions
534(4)
12.7.2 Calculation Of The GPCE Coefficients
538(2)
12.7.3 Construction Of A Surrogate Model Using A Polynomial Chaos
540(3)
12.7.4 Example Of The Use Of The Gpce Model
543(3)
12.7.5 Sensibility Analysis
546(4)
12.8 Kriging
550(5)
12.8.1 Introduction To Kriging
550(1)
12.8.2 Covariance And Variogram
551(1)
12.8.3 Ordinary And Simple Kriging
552(3)
12.9 Conclusion
555(1)
References
555(4)
About the Authors 559(10)
Index 569
Wenhua Yu is Tepin professor of Jiangsu Normal University, president of 2COMU, Inc., and a visiting professor of Harbin Engineering University. He is also the founder of Global Chinese Electromagnetic Network. Wenxing Li is a full professor at Harbin Engineering University. He received his B.S. and M.S. in electrical engineering from Harbin Engineering University. Atef Elsherbeni is a Dobelman Distinguished Chair and professor of electrical engineering and computer science at Colorado School of Mines. He earned his Ph.D. in electrical engineering from Manitoba University, Winnipeg, Manitoba, Canada. Yahya Rahmat-Samii is a distinguished professor, holder of the Northrop Grumman chair in electromagnetics, member of the NAE and past chairman of the electrical engineering department, University of California, Los Angeles.