Muutke küpsiste eelistusi

E-raamat: Advanced Control of Aircraft, Spacecraft and Rockets

Series edited by (University of Liverpool, UK), Series edited by (BAE Systems, UK), Series edited by (MIT), Series edited by (Parker Aerospace Group, USA), (Indian Institute of Technology, Kanpur, India)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 01-Jun-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119971207
  • Formaat - PDF+DRM
  • Hind: 98,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 01-Jun-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119971207

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Advanced Control of Aircraft, Missiles and Spacecraft introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems.Advanced Control of Aircraft, Missiles and Spacecraft features worked-out examples and problems at the end of each chapter as well as a number of MATLAB/ SIMULINK examples that are realistic and representative of the state-of-the-art in flight control"--

"this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems"--

Provided by publisher.

Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems.

Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB®/ Simulink® examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.

Series Preface xiii
Preface xv
1 Introduction
1(28)
1.1 Notation and Basic Definitions
1(2)
1.2 Control Systems
3(7)
1.2.1 Linear Tracking Systems
7(2)
1.2.2 Linear Time-Invariant Tracking Systems
9(1)
1.3 Guidance and Control of Flight Vehicles
10(3)
1.4 Special Tracking Laws
13(11)
1.4.1 Proportional Navigation Guidance
13(3)
1.4.2 Cross-Product Steering
16(3)
1.4.3 Proportional-Integral-Derivative Control
19(5)
1.5 Digital Tracking System
24(1)
1.6 Summary
25(1)
Exercises
26(2)
References
28(1)
2 Optimal Control Techniques
29(74)
2.1 Introduction
29(2)
2.2 Multi-variable Optimization
31(2)
2.3 Constrained Minimization
33(8)
2.3.1 Equality Constraints
34(4)
2.3.2 Inequality Constraints
38(3)
2.4 Optimal Control of Dynamic Systems
41(3)
2.4.1 Optimality Conditions
43(1)
2.5 The Hamiltonian and the Minimum Principle
44(4)
2.5.1 Hamilton-Jacobi-Bellman Equation
45(2)
2.5.2 Linear Time-Varying System with Quadratic Performance Index
47(1)
2.6 Optimal Control with End-Point State Equality Constraints
48(4)
2.6.1 Euler-Lagrange Equations
50(1)
2.6.2 Special Cases
50(2)
2.7 Numerical Solution of Two-Point Boundary Value Problems
52(9)
2.7.1 Shooting Method
54(3)
2.7.2 Collocation Method
57(4)
2.8 Optimal Terminal Control with Interior Time Constraints
61(2)
2.8.1 Optimal Singular Control
62(1)
2.9 Tracking Control
63(6)
2.9.1 Neighboring Extremal Method and Linear Quadratic Control
64(5)
2.10 Stochastic Processes
69(8)
2.10.1 Stationary Random Processes
75(2)
2.10.2 Filtering of Random Noise
77(1)
2.11 Kalman Filter
77(4)
2.12 Robust Linear Time-Invariant Control
81(15)
2.12.1 LQG/LTR Method
82(7)
2.12.2 H2/H∞ Design Methods
89(7)
2.13 Summary
96(2)
Exercises
98(3)
References
101(2)
3 Optimal Navigation and Control of Aircraft
103(92)
3.1 Aircraft Navigation Plant
104(11)
3.1.1 Wind Speed and Direction
110(2)
3.1.2 Navigational Subsystems
112(3)
3.2 Optimal Aircraft Navigation
115(13)
3.2.1 Optimal Navigation Formulation
116(3)
3.2.2 Extremal Solution of the Boundary-Value Problem: Long-Range Flight Example
119(2)
3.2.3 Great Circle Navigation
121(7)
3.3 Aircraft Attitude Dynamics
128(8)
3.3.1 Translational and Rotational Kinetics
132(3)
3.3.2 Attitude Relative to the Velocity Vector
135(1)
3.4 Aerodynamic Forces and Moments
136(3)
3.5 Longitudinal Dynamics
139(6)
3.5.1 Longitudinal Dynamics Plant
142(3)
3.6 Optimal Multi-variable Longitudinal Control
145(2)
3.7 Multi-input Optimal Longitudinal Control
147(1)
3.8 Optimal Airspeed Control
148(25)
3.8.1 LQG/LTR Design Example
149(11)
3.8.2 H∞ Design Example
160(6)
3.8.3 Altitude and Mach Control
166(7)
3.9 Lateral-Directional Control Systems
173(10)
3.9.1 Lateral-Directional Plant
173(4)
3.9.2 Optimal Roll Control
177(3)
3.9.3 Multi-variable Lateral-Directional Control: Heading-Hold Autopilot
180(3)
3.10 Optimal Control of Inertia-Coupled Aircraft Rotation
183(6)
3.11 Summary
189(3)
Exercises
192(2)
References
194(1)
4 Optimal Guidance of Rockets
195(82)
4.1 Introduction
195(1)
4.2 Optimal Terminal Guidance of Interceptors
195(4)
4.3 Non-planar Optimal Tracking System for Interceptors: 3DPN
199(9)
4.4 Flight in a Vertical Plane
208(3)
4.5 Optimal Terminal Guidance
211(5)
4.6 Vertical Launch of a Rocket (Goddard's Problem)
216(3)
4.7 Gravity-Turn Trajectory of Launch Vehicles
219(9)
4.7.1 Launch to Circular Orbit: Modulated Acceleration
220(7)
4.7.2 Launch to Circular Orbit: Constant Acceleration
227(1)
4.8 Launch of Ballistic Missiles
228(9)
4.8.1 Gravity-Turn with Modulated Forward Acceleration
232(1)
4.8.2 Modulated Forward and Normal Acceleration
233(4)
4.9 Planar Tracking Guidance System
237(10)
4.9.1 Stability, Controllability, and Observability
241(2)
4.9.2 Nominal Plant for Tracking Gravity-Turn Trajectory
243(4)
4.10 Robust and Adaptive Guidance
247(3)
4.11 Guidance with State Feedback
250(4)
4.11.1 Guidance with Normal Acceleration Input
250(4)
4.12 Observer-Based Guidance of Gravity-Turn Launch Vehicle
254(12)
4.12.1 Altitude-Based Observer with Normal Acceleration Input
255(5)
4.12.2 Bi-output Observer with Normal Acceleration Input
260(6)
4.13 Mass and Atmospheric Drag Modeling
266(8)
4.14 Summary
274(1)
Exercises
275(1)
References
275(2)
5 Attitude Control of Rockets
277(20)
5.1 Introduction
277(1)
5.2 Attitude Control Plant
277(4)
5.3 Closed-Loop Attitude Control
281(1)
5.4 Roll Control System
281(1)
5.5 Pitch Control of Rockets
282(12)
5.5.1 Pitch Program
282(1)
5.5.2 Pitch Guidance and Control System
283(5)
5.5.3 Adaptive Pitch Control System
288(6)
5.6 Yaw Control of Rockets
294(1)
5.7 Summary
295(1)
Exercises
295(1)
Reference
296(1)
6 Spacecraft Guidance Systems
297(60)
6.1 Introduction
297(1)
6.2 Orbital Mechanics
297(8)
6.2.1 Orbit Equation
298(1)
6.2.2 Perifocal and Celestial Frames
299(2)
6.2.3 Time Equation
301(3)
6.2.4 Lagrange's Coefficients
304(1)
6.3 Spacecraft Terminal Guidance
305(29)
6.3.1 Minimum Energy Orbital Transfer
307(4)
6.3.2 Lambert's Theorem
311(2)
6.3.3 Lambert fs Problem
313(9)
6.3.4 Lambert Guidance of Rockets
322(5)
6.3.5 Optimal Terminal Guidance of Re-entry Vehicles
327(7)
6.4 General Orbital Plant for Tracking Guidance
334(5)
6.5 Planar Orbital Regulation
339(6)
6.6 Optimal Non-planar Orbital Regulation
345(7)
6.7 Summary
352(1)
Exercises
352(3)
References
355(2)
7 Optimal Spacecraft Attitude Control
357(34)
7.1 Introduction
357(1)
7.2 Terminal Control of Spacecraft Attitude
357(7)
7.2.1 Optimal Single-Axis Rotation of Spacecraft
358(6)
7.3 Multi-axis Rotational Maneuvers of Spacecraft
364(11)
7.4 Spacecraft Control Torques
375(4)
7.4.1 Rocket Thrusters
375
7.4.2 Reaction Wheels, Momentum Wheels and Control Moment Gyros
311(67)
7.4.3 Magnetic Field Torque
378(1)
7.5 Satellite Dynamics Plant for Tracking Control
379(1)
7.6 Environmental Torques
380(3)
7.6.1 Gravity-Gradient Torque
382(1)
7.7 Multi-variable Tracking Control of Spacecraft Attitude
383(6)
7.7.1 Active Attitude Control of Spacecraft by Reaction Wheels
385(4)
7.8 Summary
389(1)
Exercises
389(1)
References
390(1)
Appendix A Linear Systems
391(10)
A.1 Definition
391(1)
A.2 Linearization
392(1)
A.3 Solution to Linear State Equations
392(2)
A.3.1 Homogeneous Solution
393(1)
A.3.2 General Solution
393(1)
A.4 Linear Time-Invariant System
394(1)
A.5 Linear Time-Invariant Stability Criteria
395(1)
A.6 Controllability of Linear Time-Invariant Systems
395(1)
A.7 Observability of Linear Time-Invariant Systems
395(1)
A.8 Transfer Matrix
396(1)
A.9 Singular Value Decomposition
396(1)
A.10 Linear Time-Invariant Control Design
397(3)
A.10.1 Regulator Design by Eigenstructure Assignment
397(1)
A.10.2 Regulator Design by Linear Optimal Control
398(1)
A.10.3 Linear Observers and Output Feedback Compensators
398(2)
References
400(1)
Appendix B Stability
401(8)
B.1 Preliminaries
401(1)
B.2 Stability in the Sense of Lagrange
402(2)
B.3 Stability in the Sense of Lyapunov
404(4)
B.3.1 Asymptotic Stability
406(1)
B.3.2 Global Asymptotic Stability
406(1)
B.3.3 Lyapunov's Theorem
407(1)
B.3.4 Krasovski's Theorem
408(1)
B.3.5 Lyapunov Stability of Linear Systems
408(1)
References
408(1)
Appendix C Control of Underactuated Flight Systems
409(24)
C.1 Adaptive Rocket Guidance with Forward Acceleration Input
409(6)
C.2 Thrust Saturation and Rate Limits (Increased Underactuation)
415(2)
C.3 Single- and Bi-output Observers with Forward Acceleration Input
417(15)
References
432(1)
Index 433
Ashish Tewari is a Professor in the Department of Aerospace Engineering at the IIT-Kanpur. He specializes in flight mechanics and control, and his research areas include attitude dynamics and control, re-entry flight dynamics and control, non-linear optimal control and active control of flexible flight and structures. He has authored 2 books Atmospheric and Space Flight Dynamics and Modern Control Design with MATLAB and SIMULINK, and over 40 refereed journal and conference papers.