|
|
xxi | |
|
1 Introduction to dental biomaterials and their advances |
|
|
1 | (6) |
|
|
|
|
|
|
|
3 | (2) |
|
|
5 | (2) |
|
2 Properties of dental biomaterials |
|
|
7 | (30) |
|
|
|
|
|
|
|
|
|
8 | (1) |
|
2.2 Optical properties (color) |
|
|
8 | (1) |
|
|
9 | (5) |
|
|
9 | (1) |
|
2.3.2 Transition temperatures |
|
|
9 | (2) |
|
|
11 | (1) |
|
2.3.4 Thermal conductivity (K) |
|
|
12 | (1) |
|
|
13 | (1) |
|
2.3.6 Thermal diffusivity (Δ) |
|
|
13 | (1) |
|
2.3.7 Coefficient of thermal expansion (α) |
|
|
14 | (1) |
|
|
14 | (1) |
|
2.5 Electrical conductivity and resistivity |
|
|
15 | (1) |
|
2.6 Mechanical properties and characterization methods |
|
|
16 | (6) |
|
2.7 Limitation of mechanical testing methods |
|
|
22 | (1) |
|
2.8 Biological properties |
|
|
22 | (2) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
2.9 Toxicity and cytotoxicity |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.17 Foreign body reaction |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (7) |
|
3 Dental gypsum and investments |
|
|
37 | (18) |
|
|
|
|
|
37 | (1) |
|
3.2 Desirable properties of gypsum products |
|
|
38 | (1) |
|
3.3 Production of calcium sulfate hemihydrate |
|
|
38 | (2) |
|
3.4 Types of gypsum products |
|
|
40 | (2) |
|
3.5 The setting and manipulation characteristics of gypsum products |
|
|
42 | (5) |
|
|
42 | (1) |
|
3.5.2 Pouring the impression |
|
|
43 | (1) |
|
3.5.3 The setting processes |
|
|
44 | (2) |
|
|
46 | (1) |
|
3.6 Setting expansion---hygroscopic setting expansion |
|
|
47 | (4) |
|
3.6.1 Reproduction of detail |
|
|
49 | (1) |
|
3.6.2 Compressive strength |
|
|
49 | (1) |
|
|
50 | (1) |
|
3.6.4 Surface hardness and abrasion resistance |
|
|
50 | (1) |
|
3.6.5 Dimensional stability |
|
|
51 | (1) |
|
3.7 Dies and models produced from digital data |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (3) |
|
4 Ceramic materials in dentistry |
|
|
55 | (24) |
|
|
|
55 | (10) |
|
|
56 | (5) |
|
|
61 | (3) |
|
4.1.3 Polymer-containing ceramics |
|
|
64 | (1) |
|
|
65 | (9) |
|
|
65 | (6) |
|
4.2.2 Bond strength evaluation |
|
|
71 | (2) |
|
|
73 | (1) |
|
4.3 Ceramic biological interaction |
|
|
74 | (3) |
|
|
74 | (2) |
|
4.3.2 Physical parameters |
|
|
76 | (1) |
|
4.3.3 Sterilization methods |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (2) |
|
5 Acrylic denture base materials |
|
|
79 | (26) |
|
|
|
|
|
79 | (1) |
|
5.2 Ideal properties of a denture base material |
|
|
80 | (1) |
|
5.3 Acrylic denture base materials |
|
|
80 | (6) |
|
5.3.1 Development of denture base materials |
|
|
80 | (2) |
|
5.3.2 Chemical structure and mechanism of polymerization |
|
|
82 | (3) |
|
5.3.3 Commercial forms and composition |
|
|
85 | (1) |
|
5.4 Modified and novel denture base materials and manufacturing technologies |
|
|
86 | (8) |
|
5.4.1 Rubber-reinforced resins |
|
|
87 | (1) |
|
5.4.2 Fiber-reinforced resins |
|
|
87 | (2) |
|
5.4.3 Paniculate-reinforced resins |
|
|
89 | (2) |
|
5.4.4 Hybrid reinforcement |
|
|
91 | (1) |
|
5.4.5 Hypoallergenic resins |
|
|
91 | (1) |
|
5.4.6 Thermoplastic resins |
|
|
92 | (1) |
|
5.4.7 Novel technologies in manufacturing removable denture base |
|
|
93 | (1) |
|
5.5 Denture lining materials |
|
|
94 | (5) |
|
5.5.1 Clinical indication |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (2) |
|
5.5.4 Tissue conditioners |
|
|
98 | (1) |
|
5.6 Acrylic artificial teeth |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (4) |
|
|
104 | (1) |
|
|
105 | (22) |
|
|
|
|
|
|
|
|
106 | (1) |
|
6.2 Dental filling biomaterials |
|
|
107 | (4) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
|
111 | (1) |
|
6.4 Composition of amalgam |
|
|
112 | (1) |
|
6.4.1 Low-copper dental amalgam |
|
|
112 | (1) |
|
6.4.2 High-copper dental amalgam |
|
|
112 | (1) |
|
|
113 | (1) |
|
6.5.1 Nonbonded amalgam restorations |
|
|
113 | (1) |
|
6.5.2 Bonded amalgam restorations |
|
|
114 | (1) |
|
6.5.3 Nonbonded versus adhesively bonded amalgam restorations |
|
|
114 | (1) |
|
6.6 Material properties of amalgam |
|
|
114 | (3) |
|
6.6.1 Compressive and tensile strength |
|
|
114 | (1) |
|
|
115 | (1) |
|
6.6.3 Tarnish and corrosion |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
118 | (2) |
|
6.11.1 Toxicology of mercury |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (2) |
|
|
123 | (4) |
|
7 Resin-based dental composites for tooth filling |
|
|
127 | (48) |
|
|
|
|
|
128 | (1) |
|
|
128 | (8) |
|
|
128 | (2) |
|
|
130 | (4) |
|
7.2.3 Silane coupling agent |
|
|
134 | (1) |
|
7.2.4 Initiator---accelerator system |
|
|
134 | (2) |
|
7.2.5 Pigments and other components |
|
|
136 | (1) |
|
7.3 Classification of resin composites |
|
|
136 | (2) |
|
7.3.1 According to the fillers size and distribution |
|
|
136 | (1) |
|
7.3.2 According to the composite consistency |
|
|
137 | (1) |
|
7.3.3 According to the packing (placement) technique |
|
|
138 | (1) |
|
7.3.4 According to the curing techniques |
|
|
138 | (1) |
|
7.4 Clinical indications of resin composites |
|
|
138 | (1) |
|
7.5 Properties and limitations |
|
|
139 | (9) |
|
7.5.1 Degree of conversion |
|
|
139 | (1) |
|
7.5.2 Polymerization shrinkage and polymerization shrinkage stresses |
|
|
140 | (4) |
|
7.5.3 Physical properties |
|
|
144 | (1) |
|
7.5.4 Esthetic properties |
|
|
144 | (1) |
|
7.5.5 Mechanical properties |
|
|
145 | (1) |
|
|
145 | (2) |
|
|
147 | (1) |
|
7.5.8 Clinical durability |
|
|
147 | (1) |
|
7.6 Attempts for resin composite improvement |
|
|
148 | (17) |
|
7.6.1 Regarding material formulation |
|
|
148 | (6) |
|
7.6.2 Regarding manipulation |
|
|
154 | (2) |
|
7.6.3 Regarding both material formulation and manipulation |
|
|
156 | (9) |
|
7.7 Guidelines and recommendations for future laboratory and clinical researches |
|
|
165 | (6) |
|
7.7.1 Guidelines for laboratory evaluation of resin composite (mechanical behavior and technique sensitivity) |
|
|
166 | (1) |
|
7.7.2 Recommendations for future clinical studies |
|
|
166 | (5) |
|
|
171 | (4) |
|
8 Glass-ionomer cement: chemistry and its applications in dentistry |
|
|
175 | (22) |
|
|
|
|
175 | (1) |
|
8.2 Development of glass-ionomer cements |
|
|
176 | (2) |
|
8.3 Components of glass-ionomer cements |
|
|
178 | (3) |
|
8.3.1 Composition and nature of the glass component |
|
|
178 | (2) |
|
8.3.2 Composition and nature of the acid component |
|
|
180 | (1) |
|
8.3.3 Water: the reaction medium |
|
|
181 | (1) |
|
8.4 Chemistry of the setting reaction |
|
|
181 | (2) |
|
8.4.1 Decomposition of the glass powder |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
8.5 Fluoride release from glass-ionomer cements |
|
|
183 | (2) |
|
|
183 | (1) |
|
8.5.2 Mechanism of fluoride release |
|
|
184 | (1) |
|
8.5.3 Factors effecting fluoride release |
|
|
184 | (1) |
|
8.6 Mechanical properties |
|
|
185 | (3) |
|
8.6.1 Compressive strength |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (1) |
|
8.8 Chemical adhesion with tooth |
|
|
188 | (1) |
|
8.9 Moisture sensitivity of glass-ionomer cements |
|
|
189 | (1) |
|
8.10 Use of glass-ionomer cements in alternative restorative technique |
|
|
189 | (1) |
|
8.11 Nanoapatite-filled glass ionomers |
|
|
189 | (1) |
|
8.12 Thermo-cured glass ionomers |
|
|
190 | (1) |
|
8.13 Resin-modified glass-ionomer cements |
|
|
190 | (1) |
|
8.14 Glass ionomer as a "nondental" cement |
|
|
191 | (1) |
|
|
191 | (3) |
|
|
194 | (3) |
|
9 Impression materials for dental prosthesis |
|
|
197 | (20) |
|
|
|
|
|
|
|
|
|
|
|
|
198 | (2) |
|
9.2 Elastic impression materials |
|
|
200 | (4) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
202 | (2) |
|
9.3 Inelastic impression materials |
|
|
204 | (3) |
|
|
204 | (1) |
|
9.3.2 Impression compound |
|
|
205 | (1) |
|
|
205 | (1) |
|
9.3.4 Metallic oxide pastes (zinc oxide---eugenol impression paste) |
|
|
206 | (1) |
|
9.4 Characteristics of impression materials |
|
|
207 | (5) |
|
9.4.1 Dimensional accuracy/dimensional stability |
|
|
207 | (1) |
|
|
208 | (1) |
|
9.4.3 Elastic recovery/flexibility |
|
|
208 | (1) |
|
9.4.4 Mechanical properties |
|
|
209 | (1) |
|
|
209 | (3) |
|
9.5 Conclusion and future perspective |
|
|
212 | (1) |
|
|
212 | (5) |
|
10 Nano glass ionomer cement: modification for biodental applications |
|
|
217 | (12) |
|
|
|
|
|
|
|
217 | (2) |
|
10.2 Applications of glass ionomer cements |
|
|
219 | (1) |
|
10.3 Nanomodifications of glass ionomer cement powders |
|
|
219 | (5) |
|
10.3.1 Powder-based nanomodification of glass ionomer cements |
|
|
220 | (1) |
|
10.3.2 Nanohydroxyapatite and ionomers |
|
|
220 | (2) |
|
10.3.3 Glass ionomer cements modified with other nanoparticles |
|
|
222 | (1) |
|
10.3.4 Nanomodified resin-modified glass ionomer cements |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (5) |
|
11 Enamel etching and dental adhesives |
|
|
229 | (26) |
|
|
Hafiz Muhammad Owais Nasim |
|
|
|
|
229 | (1) |
|
11.2 Indications of adhesives |
|
|
230 | (1) |
|
11.3 Composition of adhesives |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
11.4 Types of enamel etching |
|
|
232 | (5) |
|
|
232 | (3) |
|
|
235 | (1) |
|
|
236 | (1) |
|
11.5 Classifications of adhesives |
|
|
237 | (4) |
|
11.5.1 Classification based on generations |
|
|
237 | (3) |
|
11.5.2 Classification based on clinical steps |
|
|
240 | (1) |
|
11.5.3 Classification based on interaction with smear layer |
|
|
241 | (1) |
|
|
241 | (1) |
|
11.7 Advancement in adhesives |
|
|
242 | (5) |
|
11.7.1 Antibacterial properties |
|
|
242 | (3) |
|
11.7.2 Bioactive properties |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
248 | (7) |
|
12 Endodontic materials: from old materials to recent advances |
|
|
255 | (46) |
|
|
|
|
256 | (1) |
|
12.2 Materials used in vital pulp therapy |
|
|
256 | (7) |
|
12.2.1 Mineral trioxide aggregates |
|
|
257 | (5) |
|
12.2.2 Biodentine (Septodont, Saint-Maur-des-Fosses, France) |
|
|
262 | (1) |
|
12.2.3 Bioaggregate (Innovative Bioceramix, Vancouver, BC, Canada) |
|
|
262 | (1) |
|
12.2.4 Mineral Trioxide Aggregate Angelus (Londrina, PR, Brazil) |
|
|
262 | (1) |
|
12.2.5 Endosequence (Brasseler USA, Savanah, Georgia, United States) |
|
|
262 | (1) |
|
12.3 Materials used as root canal irrigants |
|
|
263 | (8) |
|
12.3.1 Sodium hypochlorite |
|
|
263 | (2) |
|
12.3.2 Ethylenediamine tetra-acetic acid |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (2) |
|
|
269 | (1) |
|
|
269 | (1) |
|
12.3.8 Iodine potassium iodide |
|
|
269 | (1) |
|
12.3.9 1-Hydroxyethylidene-1,1 -bisphosphonate |
|
|
269 | (1) |
|
|
270 | (1) |
|
12.4 Intracanal medicaments |
|
|
271 | (3) |
|
|
271 | (1) |
|
|
272 | (1) |
|
|
273 | (1) |
|
12.4.4 Triple antibiotics pastes |
|
|
273 | (1) |
|
|
274 | (1) |
|
12.5 Root canal obturation materials |
|
|
274 | (16) |
|
12.5.1 Core obturation materials |
|
|
274 | (3) |
|
12.5.2 Root canal sealers (cementing medium) |
|
|
277 | (13) |
|
12.6 Root-end filling materials |
|
|
290 | (2) |
|
|
290 | (1) |
|
12.6.2 Zinc oxide eugenol cements |
|
|
290 | (1) |
|
12.6.3 Composite resins (Retroplast) |
|
|
290 | (2) |
|
12.6.4 Glass ionomer cements |
|
|
292 | (1) |
|
12.6.5 Diaket (3M/ESPE, Seefeld, Germany) |
|
|
292 | (1) |
|
12.6.6 Resin---ionomer suspension and compomer |
|
|
292 | (1) |
|
12.6.7 Other types of cement |
|
|
292 | (1) |
|
12.7 Perforation repair materials |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (6) |
|
|
299 | (2) |
|
13 Fiber-reinforced composites |
|
|
301 | (16) |
|
|
|
|
|
|
|
|
302 | (1) |
|
13.2 Anatomy and physiology of teeth |
|
|
302 | (3) |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
13.3 Mechanical properties of teeth |
|
|
305 | (1) |
|
13.4 Biomaterials used in dentistry |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
306 | (1) |
|
13.5 Fiber-reinforced composites |
|
|
306 | (5) |
|
13.5.1 Fiber-reinforced composite composition |
|
|
306 | (2) |
|
13.5.2 Influencing factors on mechanical properties |
|
|
308 | (3) |
|
13.6 Clinical applications of fiber-reinforced composites |
|
|
311 | (2) |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (2) |
|
|
315 | (2) |
|
14 Zirconium in dentistry |
|
|
317 | (30) |
|
|
|
|
|
|
317 | (4) |
|
|
321 | (3) |
|
14.2.1 Feldspathic ceramics |
|
|
323 | (1) |
|
14.2.2 Leucite-based ceramics |
|
|
323 | (1) |
|
14.2.3 Lithium disilicate---based ceramics |
|
|
323 | (1) |
|
14.2.4 Alumina-based ceramics |
|
|
323 | (1) |
|
14.2.5 Zirconia-based ceramics |
|
|
324 | (1) |
|
14.3 Zirconia in dentistry |
|
|
324 | (2) |
|
14.4 Yttrium-stabilized tetragonal zirconia |
|
|
326 | (2) |
|
14.5 Zirconia-toughened alumina |
|
|
328 | (1) |
|
14.6 Surface topography, clinical treatments of zirconia surface, and adhesion to zirconia in dental restorations |
|
|
329 | (4) |
|
14.7 Failure and fractographic analysis of zirconia restorations |
|
|
333 | (2) |
|
14.8 Mechanical testing of zirconia ceramics |
|
|
335 | (2) |
|
14.9 Limitations and challenges |
|
|
337 | (1) |
|
|
338 | (9) |
|
15 Natural and synthetic bone replacement graft materials for dental and maxillofacial applications |
|
|
347 | (30) |
|
|
|
|
|
|
|
347 | (1) |
|
15.2 Rationale behind use of bone replacement graft materials |
|
|
348 | (2) |
|
15.3 Natural tissues and synthetic biomaterials used for bone grafting |
|
|
350 | (13) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
355 | (8) |
|
15.4 Biocompatibility of bone replacement graft materials and their degradation products |
|
|
363 | (1) |
|
15.5 Biodegradation of implanted graft materials and bone formation |
|
|
363 | (2) |
|
15.6 Future of bone tissue graft materials |
|
|
365 | (1) |
|
|
366 | (11) |
|
16 Calcium orthophosphates as a dental regenerative material |
|
|
377 | (76) |
|
|
|
377 | (6) |
|
16.2 General definitions and knowledge |
|
|
383 | (2) |
|
16.3 Brief information on current biomedical applications of CaPO4 |
|
|
385 | (1) |
|
16.4 CaPO4 for dental caries prevention and in dentifrices |
|
|
385 | (9) |
|
|
386 | (3) |
|
|
389 | (1) |
|
16.4.3 Teeth remineralization |
|
|
390 | (2) |
|
16.4.4 Dentin hypersensitivity treatments |
|
|
392 | (2) |
|
16.5 Clinical applications of CaPO4 in dentistry |
|
|
394 | (20) |
|
16.5.1 Classification according to the existing CaPO4 |
|
|
395 | (9) |
|
16.5.2 Classification according to the dental specialties |
|
|
404 | (10) |
|
16.6 Tissue engineering approaches |
|
|
414 | (2) |
|
|
416 | (1) |
|
|
416 | (36) |
|
|
452 | (1) |
|
17 Bioactive glasses---structure and applications |
|
|
453 | (24) |
|
|
|
|
|
|
|
454 | (1) |
|
17.2 Bioactivity of glasses |
|
|
454 | (2) |
|
17.2.1 Mechanism of action |
|
|
455 | (1) |
|
|
455 | (1) |
|
17.3 Factors affecting apatite formation |
|
|
456 | (1) |
|
17.4 Composition of different bioactive glasses |
|
|
456 | (4) |
|
17.4.1 Silicate-based bioactive glasses |
|
|
457 | (1) |
|
17.4.2 Borate-based bioactive glasses |
|
|
458 | (2) |
|
17.5 Methods of synthesis |
|
|
460 | (1) |
|
17.6 Clinical applications of bioactive glasses |
|
|
460 | (9) |
|
17.6.1 Bone graft substitute |
|
|
461 | (1) |
|
|
461 | (1) |
|
17.6.3 Drug delivery system |
|
|
462 | (1) |
|
17.6.4 Coating of implants |
|
|
463 | (1) |
|
17.6.5 Use in toothpastes |
|
|
463 | (2) |
|
17.6.6 Antibacterial activity |
|
|
465 | (1) |
|
17.6.7 Role in minimal invasive dentistry |
|
|
465 | (1) |
|
17.6.8 Bioactive glass scaffolds |
|
|
465 | (3) |
|
17.6.9 Particle size of bioactive glasses and its effect on various clinical applications |
|
|
468 | (1) |
|
17.7 Future of bioactive glasses |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
470 | (6) |
|
|
476 | (1) |
|
18 Nanotechnology and nanomaterials in dentistry |
|
|
477 | (30) |
|
|
|
|
|
|
|
|
477 | (1) |
|
18.2 Natural biomaterials and nanoscience |
|
|
478 | (2) |
|
18.3 General properties of nanomaterials |
|
|
480 | (1) |
|
18.4 Dental applications of nanobiomaterials |
|
|
481 | (11) |
|
18.4.1 Nanobiomaterials for preventive dentistry |
|
|
482 | (1) |
|
18.4.2 Nanomaterials for periodontics |
|
|
483 | (1) |
|
18.4.3 Nanomaterials for dental implants |
|
|
484 | (2) |
|
18.4.4 Restorative nanobiomaterials |
|
|
486 | (2) |
|
18.4.5 Endodontic nanobiomaterials |
|
|
488 | (2) |
|
18.4.6 Nanomaterials and endodontic regeneration |
|
|
490 | (1) |
|
18.4.7 Nanomaterials and tissue engineering |
|
|
490 | (1) |
|
18.4.8 Electrospun nanomaterials |
|
|
491 | (1) |
|
18.5 Potential of nanomaterials |
|
|
492 | (2) |
|
|
494 | (1) |
|
|
494 | (13) |
|
|
507 | (34) |
|
|
|
|
|
|
|
|
|
508 | (1) |
|
19.2 Digital radiography and magnetic resonance imaging |
|
|
508 | (8) |
|
19.2.1 Intraoral, extraoral, including cone beam computed tomography |
|
|
508 | (1) |
|
19.2.2 Clinical applications |
|
|
509 | (3) |
|
|
512 | (4) |
|
|
516 | (1) |
|
19.4 Photography and shade selection |
|
|
516 | (1) |
|
19.5 Computer-aided design---computer-aided manufacturing systems in dentistry |
|
|
517 | (4) |
|
|
518 | (1) |
|
19.5.2 Laboratory and industrial milling |
|
|
518 | (1) |
|
19.5.3 Machining of the restorations |
|
|
519 | (1) |
|
19.5.4 Three-dimensional printing |
|
|
519 | (2) |
|
19.6 Computer-supported implant dentistry |
|
|
521 | (9) |
|
19.6.1 Three-dimensional printing in implant dentistry |
|
|
521 | (1) |
|
19.6.2 Recent advances in implant technologies |
|
|
522 | (2) |
|
19.6.3 Computer-guided implant surgery |
|
|
524 | (1) |
|
19.6.4 Computer-navigated implant surgery |
|
|
524 | (3) |
|
19.6.5 Computer-aided design---computer-aided manufacturing systems in implant restorative dentistry |
|
|
527 | (1) |
|
19.6.6 Prosthetic abutments |
|
|
528 | (1) |
|
19.6.7 Computer-aided design---computer-aided manufacturing abutments in implant dentistry |
|
|
528 | (1) |
|
|
529 | (1) |
|
19.6.9 Computer-aided design-computer-aided manufacturing custom implant abutments |
|
|
529 | (1) |
|
19.7 Lasers and dental applications |
|
|
530 | (3) |
|
19.7.1 History of lasers in dentistry |
|
|
531 | (1) |
|
|
531 | (1) |
|
19.7.3 Mechanism of laser action |
|
|
532 | (1) |
|
19.8 Technology and dental education |
|
|
533 | (2) |
|
|
535 | (5) |
|
|
540 | (1) |
|
20 Biomaterials used in orthodontics: brackets, archwires, and clear aligners |
|
|
541 | (40) |
|
|
|
|
|
|
541 | (1) |
|
20.2 Orthodontic brackets |
|
|
542 | (11) |
|
|
542 | (8) |
|
|
550 | (1) |
|
|
551 | (2) |
|
20.3 Orthodontic archwires |
|
|
553 | (9) |
|
20.3.1 Properties of orthodontic archwires |
|
|
553 | (2) |
|
20.3.2 Classification of orthodontic archwires |
|
|
555 | (7) |
|
|
562 | (10) |
|
20.4.1 Material composition |
|
|
562 | (3) |
|
20.4.2 The thermoforming process |
|
|
565 | (1) |
|
20.4.3 Forces of thermoplastic aligners |
|
|
565 | (2) |
|
20.4.4 Mechanical properties |
|
|
567 | (2) |
|
|
569 | (2) |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
572 | (9) |
|
21 Dental implants materials and surface treatments |
|
|
581 | (18) |
|
|
|
|
|
|
|
|
|
581 | (2) |
|
21.2 Osseointegration: cellular and biomaterial aspects |
|
|
583 | (1) |
|
21.3 Biomaterial properties and implant surface characteristics |
|
|
584 | (1) |
|
21.4 Biomechanical properties of dental implants |
|
|
584 | (1) |
|
|
585 | (1) |
|
21.6 Type of dental implant material |
|
|
586 | (2) |
|
21.6.1 Alveolar bone properties |
|
|
587 | (1) |
|
21.6.2 Influence of oral health and systemic disease on implant survival |
|
|
587 | (1) |
|
21.7 Modification of the dental implants |
|
|
588 | (2) |
|
21.7.1 Modification of titanium implants |
|
|
588 | (2) |
|
21.8 Functionally graded/hierarchical dental implant surfaces |
|
|
590 | (1) |
|
21.9 Modification of the polyetheretherketone dental implants |
|
|
590 | (2) |
|
21.10 Modification of zirconia implants |
|
|
592 | (1) |
|
|
592 | (1) |
|
|
592 | (7) |
|
22 Graphene to improve the physicomechanical properties and bioactivity of the cements |
|
|
599 | (16) |
|
|
Francisco Javier Rodnguez-Lozano |
|
|
|
|
599 | (1) |
|
22.1.1 Graphene and its derivatives |
|
|
599 | (1) |
|
22.2 Graphene to improve cementitious materials |
|
|
600 | (9) |
|
|
609 | (1) |
|
|
609 | (6) |
|
23 Biomaterials for maxillofacial prosthetic rehabilitation |
|
|
615 | (28) |
|
|
|
616 | (1) |
|
23.2 Historical background |
|
|
616 | (1) |
|
23.3 Ideal properties of maxillofacial material |
|
|
617 | (1) |
|
23.4 Search for ideal materials for maxillofacial rehabilitation |
|
|
617 | (3) |
|
23.4.1 Acrylic resins (1940-60) |
|
|
617 | (2) |
|
23.4.2 Polyvinylchloride and copolymer |
|
|
619 | (1) |
|
23.4.3 Chlorinated polyethylene |
|
|
619 | (1) |
|
23.4.4 Polyurethane elastomers (1970-90) |
|
|
619 | (1) |
|
23.4.5 Thermoset urethane elastomers |
|
|
619 | (1) |
|
23.4.6 Silicones (1960-70) |
|
|
620 | (1) |
|
|
620 | (2) |
|
23.5.1 Polymer structures |
|
|
620 | (2) |
|
23.6 Classification of maxillofacial silicones |
|
|
622 | (3) |
|
23.6.1 Classification of silicones according to application |
|
|
622 | (3) |
|
23.7 Types of maxillofacial silicones |
|
|
625 | (3) |
|
23.7.1 Most common room temperature vulcanizing silicones |
|
|
625 | (2) |
|
23.7.2 Medical grade liquid silicone elastomers |
|
|
627 | (1) |
|
|
627 | (1) |
|
23.7.4 Medical grade VerSiTal silicone elastomers |
|
|
628 | (1) |
|
23.8 M-511 platinum silicone rubber |
|
|
628 | (4) |
|
|
629 | (1) |
|
|
629 | (1) |
|
23.8.3 Types of silicone fluids |
|
|
629 | (3) |
|
|
632 | (1) |
|
23.10 Soft liners and tissue conditioners |
|
|
633 | (2) |
|
|
633 | (1) |
|
23.10.2 Coe-Comfort and Coe-Soft |
|
|
633 | (2) |
|
23.10.3 Sculpturing clays and waxes |
|
|
635 | (1) |
|
|
635 | (3) |
|
|
635 | (1) |
|
|
636 | (1) |
|
|
636 | (1) |
|
23.11.4 Acetoxy silastic adhesives |
|
|
636 | (2) |
|
|
638 | (1) |
|
|
639 | (4) |
|
24 Biomaterials for craniofacial tissue engineering and regenerative dentistry |
|
|
643 | (32) |
|
|
|
|
|
|
644 | (3) |
|
24.1.1 Scaffolds for bone tissue engineering |
|
|
645 | (1) |
|
24.1.2 Functions and features of scaffolds |
|
|
646 | (1) |
|
24.1.3 Classification of biomaterials |
|
|
646 | (1) |
|
24.2 Natural biomaterials |
|
|
647 | (7) |
|
|
647 | (1) |
|
|
648 | (1) |
|
|
649 | (1) |
|
|
650 | (1) |
|
|
651 | (1) |
|
|
651 | (2) |
|
|
653 | (1) |
|
|
653 | (1) |
|
24.3 Synthetic biomaterials |
|
|
654 | (1) |
|
24.3.1 Polyethyleneglycol |
|
|
654 | (1) |
|
24.3.2 Poly-e-caprolactone |
|
|
654 | (1) |
|
|
655 | (1) |
|
|
655 | (3) |
|
24.4.1 Tricalcium phosphate |
|
|
655 | (1) |
|
|
656 | (1) |
|
24.4.3 Tricalcium phosphate/hydroxyapatite biphasic ceramics (biphasic calcium phosphate) |
|
|
657 | (1) |
|
|
657 | (1) |
|
|
658 | (3) |
|
24.5.1 Biodegradable metal scaffolds |
|
|
658 | (1) |
|
|
659 | (1) |
|
|
660 | (1) |
|
24.6 Bioactive restorative materials |
|
|
661 | (2) |
|
24.6.1 Mineral trioxide aggregate |
|
|
661 | (1) |
|
|
662 | (1) |
|
24.7 Three-dimensional printed scaffolds |
|
|
663 | (1) |
|
|
664 | (1) |
|
|
664 | (11) |
|
25 Applications of silver diamine fluoride in management of dental caries |
|
|
675 | (26) |
|
|
|
|
|
675 | (1) |
|
|
676 | (1) |
|
25.3 Clinical effects of silver diamine fluoride applications on caries management |
|
|
676 | (9) |
|
25.3.1 Management of coronal caries in children |
|
|
677 | (6) |
|
25.3.2 Management of coronal caries in adults |
|
|
683 | (1) |
|
25.3.3 Management of root caries in the elderly |
|
|
684 | (1) |
|
25.4 Cariostatic mechanism of silver diamine fluoride |
|
|
685 | (7) |
|
25.4.1 Cariostatic effects of silver diamine fluoride on dental mineral |
|
|
685 | (5) |
|
25.4.2 Cariostatic effects of silver diamine fluoride on cariogenic bacteria |
|
|
690 | (2) |
|
25.4.3 Cariostatic effects of silver diamine fluoride on organic content of dentine |
|
|
692 | (1) |
|
25.5 Safety of silver diamine fluoride treatment |
|
|
692 | (2) |
|
|
694 | (1) |
|
|
694 | (7) |
Index |
|
701 | |