Muutke küpsiste eelistusi

E-raamat: Advanced Dental Biomaterials

Edited by , Edited by (Lecturer and Course Coordinator, Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia), Edited by (Adjunct Clinical Instructor, Department of Endodontics, Schulich School of Me), Edited by
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-May-2019
  • Kirjastus: Woodhead Publishing Ltd
  • Keel: eng
  • ISBN-13: 9780081024775
  • Formaat - EPUB+DRM
  • Hind: 300,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-May-2019
  • Kirjastus: Woodhead Publishing Ltd
  • Keel: eng
  • ISBN-13: 9780081024775

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advanced Dental Biomaterials is an invaluable reference for researchers and clinicians within the biomedical industry and academia. The book can be used by both an experienced researcher/clinician learning about other biomaterials or applications that may be applicable to their current research or as a guide for a new entrant into the field who needs to gain an understanding of the primary challenges, opportunities, most relevant biomaterials, and key applications in dentistry.

  • Provides a comprehensive review of the materials science, engineering principles and recent advances in dental biomaterials
  • Reviews the fundamentals of dental biomaterials and examines advanced materials’ applications for tissues regeneration and clinical dentistry
  • Written by an international collaborative team of materials scientists, biomedical engineers, oral biologists and dental clinicians in order to provide a balanced perspective on the field
List of contributors
xxi
1 Introduction to dental biomaterials and their advances
1(6)
Zohaib Khurshid
Muhammad S. Zafar
Shariq Najeeb
Touraj Nejatian
Farshid Sefat
References
3(2)
Further reading
5(2)
2 Properties of dental biomaterials
7(30)
Muhammad S. Zafar
Rizwan Ullah
Zeeshan Qamar
Muhammad A. Fareed
Faiza Amin
Zohaib Khurshid
Farshid Sefat
2.1 Introduction
8(1)
2.2 Optical properties (color)
8(1)
2.3 Thermal properties
9(5)
2.3.1 Temperature
9(1)
2.3.2 Transition temperatures
9(2)
2.3.3 Heat of fusion (L)
11(1)
2.3.4 Thermal conductivity (K)
12(1)
2.3.5 Specific heat (Cp)
13(1)
2.3.6 Thermal diffusivity (Δ)
13(1)
2.3.7 Coefficient of thermal expansion (α)
14(1)
2.4 Viscosity
14(1)
2.5 Electrical conductivity and resistivity
15(1)
2.6 Mechanical properties and characterization methods
16(6)
2.7 Limitation of mechanical testing methods
22(1)
2.8 Biological properties
22(2)
2.8.1 Biocompatibility
22(1)
2.8.2 In vitro testing
23(1)
2.8.3 In vivo testing
24(1)
2.8.4 Usage tests
24(1)
2.9 Toxicity and cytotoxicity
24(2)
2.10 Cytotoxicity tests
26(1)
2.11 Fluoride and caries
26(1)
2.11.1 Fluoride toxicity
27(1)
2.12 Carcinogenicity
27(1)
2.13 Biodegradation
28(1)
2.14 Bioactivity
28(1)
2.15 Osseointegration
29(1)
2.16 Osteoinduction
29(1)
2.17 Foreign body reaction
29(1)
2.18 Conclusive remarks
30(1)
References
30(7)
3 Dental gypsum and investments
37(18)
Touraj Nejatian
Pegah Firouzmanesh
Azeem Ul Yaqin Syed
3.1 Introduction
37(1)
3.2 Desirable properties of gypsum products
38(1)
3.3 Production of calcium sulfate hemihydrate
38(2)
3.4 Types of gypsum products
40(2)
3.5 The setting and manipulation characteristics of gypsum products
42(5)
3.5.1 Mixing technique
42(1)
3.5.2 Pouring the impression
43(1)
3.5.3 The setting processes
44(2)
3.5.4 Setting time
46(1)
3.6 Setting expansion---hygroscopic setting expansion
47(4)
3.6.1 Reproduction of detail
49(1)
3.6.2 Compressive strength
49(1)
3.6.3 Tensile strength
50(1)
3.6.4 Surface hardness and abrasion resistance
50(1)
3.6.5 Dimensional stability
51(1)
3.7 Dies and models produced from digital data
51(1)
3.8 Conclusion
52(1)
References
52(3)
4 Ceramic materials in dentistry
55(24)
James K.M. Tsoi
4.1 Introduction
55(10)
4.1.1 Glass ceramics
56(5)
4.1.2 Oxide ceramics
61(3)
4.1.3 Polymer-containing ceramics
64(1)
4.2 Ceramic bonding
65(9)
4.2.1 Mechanism
65(6)
4.2.2 Bond strength evaluation
71(2)
4.2.3 Fatigue
73(1)
4.3 Ceramic biological interaction
74(3)
4.3.1 Surface chemistry
74(2)
4.3.2 Physical parameters
76(1)
4.3.3 Sterilization methods
77(1)
4.4 Conclusion
77(1)
References
77(2)
5 Acrylic denture base materials
79(26)
Touraj Nejatian
Sajjad Pezeshki
Azeem Ill Yaqin Syed
5.1 Introduction
79(1)
5.2 Ideal properties of a denture base material
80(1)
5.3 Acrylic denture base materials
80(6)
5.3.1 Development of denture base materials
80(2)
5.3.2 Chemical structure and mechanism of polymerization
82(3)
5.3.3 Commercial forms and composition
85(1)
5.4 Modified and novel denture base materials and manufacturing technologies
86(8)
5.4.1 Rubber-reinforced resins
87(1)
5.4.2 Fiber-reinforced resins
87(2)
5.4.3 Paniculate-reinforced resins
89(2)
5.4.4 Hybrid reinforcement
91(1)
5.4.5 Hypoallergenic resins
91(1)
5.4.6 Thermoplastic resins
92(1)
5.4.7 Novel technologies in manufacturing removable denture base
93(1)
5.5 Denture lining materials
94(5)
5.5.1 Clinical indication
94(1)
5.5.2 Hard relining
95(1)
5.5.3 Soft relining
96(2)
5.5.4 Tissue conditioners
98(1)
5.6 Acrylic artificial teeth
99(1)
5.7 Conclusion
100(1)
References
100(4)
Further reading
104(1)
6 Dental amalgam
105(22)
Nasira Haque
Safiyya Yousaf
Touraj Nejatian
Mansour Yousejfi
Masoud Mozafari
Farshid Sefat
6.1 Introduction
106(1)
6.2 Dental filling biomaterials
107(4)
6.2.1 Gold fillings
107(1)
6.2.2 Dental composites
108(1)
6.2.3 Amalgam
109(2)
6.3 History of amalgam
111(1)
6.4 Composition of amalgam
112(1)
6.4.1 Low-copper dental amalgam
112(1)
6.4.2 High-copper dental amalgam
112(1)
6.5 Amalgam bonding
113(1)
6.5.1 Nonbonded amalgam restorations
113(1)
6.5.2 Bonded amalgam restorations
114(1)
6.5.3 Nonbonded versus adhesively bonded amalgam restorations
114(1)
6.6 Material properties of amalgam
114(3)
6.6.1 Compressive and tensile strength
114(1)
6.6.2 Creep
115(1)
6.6.3 Tarnish and corrosion
116(1)
6.7 Dimensional change
117(1)
6.8 Hardness
117(1)
6.9 Young's modulus
118(1)
6.10 Failure mode
118(1)
6.11 Biocompatibility
118(2)
6.11.1 Toxicology of mercury
118(2)
6.12 Conclusion
120(1)
References
121(2)
Further reading
123(4)
7 Resin-based dental composites for tooth filling
127(48)
Ahmed El-Banna
Dalia Sherief
Amr S. Fawzy
7.1 Introduction
128(1)
7.2 General composition
128(8)
7.2.1 The resin matrix
128(2)
7.2.2 Fillers
130(4)
7.2.3 Silane coupling agent
134(1)
7.2.4 Initiator---accelerator system
134(2)
7.2.5 Pigments and other components
136(1)
7.3 Classification of resin composites
136(2)
7.3.1 According to the fillers size and distribution
136(1)
7.3.2 According to the composite consistency
137(1)
7.3.3 According to the packing (placement) technique
138(1)
7.3.4 According to the curing techniques
138(1)
7.4 Clinical indications of resin composites
138(1)
7.5 Properties and limitations
139(9)
7.5.1 Degree of conversion
139(1)
7.5.2 Polymerization shrinkage and polymerization shrinkage stresses
140(4)
7.5.3 Physical properties
144(1)
7.5.4 Esthetic properties
144(1)
7.5.5 Mechanical properties
145(1)
7.5.6 Biocompatibility
145(2)
7.5.7 Degradation
147(1)
7.5.8 Clinical durability
147(1)
7.6 Attempts for resin composite improvement
148(17)
7.6.1 Regarding material formulation
148(6)
7.6.2 Regarding manipulation
154(2)
7.6.3 Regarding both material formulation and manipulation
156(9)
7.7 Guidelines and recommendations for future laboratory and clinical researches
165(6)
7.7.1 Guidelines for laboratory evaluation of resin composite (mechanical behavior and technique sensitivity)
166(1)
7.7.2 Recommendations for future clinical studies
166(5)
References
171(4)
8 Glass-ionomer cement: chemistry and its applications in dentistry
175(22)
Saroash Shahid
Tomas Duminis
8.1 Introduction
175(1)
8.2 Development of glass-ionomer cements
176(2)
8.3 Components of glass-ionomer cements
178(3)
8.3.1 Composition and nature of the glass component
178(2)
8.3.2 Composition and nature of the acid component
180(1)
8.3.3 Water: the reaction medium
181(1)
8.4 Chemistry of the setting reaction
181(2)
8.4.1 Decomposition of the glass powder
182(1)
8.4.2 Gelation phase
182(1)
8.4.3 Maturation phase
183(1)
8.5 Fluoride release from glass-ionomer cements
183(2)
8.5.1 Source of fluoride
183(1)
8.5.2 Mechanism of fluoride release
184(1)
8.5.3 Factors effecting fluoride release
184(1)
8.6 Mechanical properties
185(3)
8.6.1 Compressive strength
185(1)
8.6.2 Flexural strength
186(2)
8.7 Esthetics
188(1)
8.8 Chemical adhesion with tooth
188(1)
8.9 Moisture sensitivity of glass-ionomer cements
189(1)
8.10 Use of glass-ionomer cements in alternative restorative technique
189(1)
8.11 Nanoapatite-filled glass ionomers
189(1)
8.12 Thermo-cured glass ionomers
190(1)
8.13 Resin-modified glass-ionomer cements
190(1)
8.14 Glass ionomer as a "nondental" cement
191(1)
References
191(3)
Further reading
194(3)
9 Impression materials for dental prosthesis
197(20)
Payam Zarrintaj
Sahba Rezaei
Seyed Hassan Jafari
Mohammad Reza Saeb
Shadi Ghalami
Mahsa Roshandel
Brouki Milan Peiman
Daghigh Ahmadi Ehsaneh
Farshid Sefat
Masoud Mozafari
9.1 Introduction
198(2)
9.2 Elastic impression materials
200(4)
9.2.1 Poly ethers
200(1)
9.2.2 Polysulfide
201(1)
9.2.3 Alginate
201(1)
9.2.4 Agar
202(1)
9.2.5 Silicones
202(2)
9.3 Inelastic impression materials
204(3)
9.3.1 Impression wax
204(1)
9.3.2 Impression compound
205(1)
9.3.3 Impression plaster
205(1)
9.3.4 Metallic oxide pastes (zinc oxide---eugenol impression paste)
206(1)
9.4 Characteristics of impression materials
207(5)
9.4.1 Dimensional accuracy/dimensional stability
207(1)
9.4.2 Wettability
208(1)
9.4.3 Elastic recovery/flexibility
208(1)
9.4.4 Mechanical properties
209(1)
9.4.5 Miscellaneous
209(3)
9.5 Conclusion and future perspective
212(1)
References
212(5)
10 Nano glass ionomer cement: modification for biodental applications
217(12)
Shariq Nqjeeb
Zohaib Khurshid
Hani Ghabbani
Muhammad S. Zafar
Farshid Sefat
10.1 Introduction
217(2)
10.2 Applications of glass ionomer cements
219(1)
10.3 Nanomodifications of glass ionomer cement powders
219(5)
10.3.1 Powder-based nanomodification of glass ionomer cements
220(1)
10.3.2 Nanohydroxyapatite and ionomers
220(2)
10.3.3 Glass ionomer cements modified with other nanoparticles
222(1)
10.3.4 Nanomodified resin-modified glass ionomer cements
223(1)
10.4 Conclusion
224(1)
References
224(5)
11 Enamel etching and dental adhesives
229(26)
Ahmed Talal
Hafiz Muhammad Owais Nasim
Abdul Samad Khan
11.1 Introduction
229(1)
11.2 Indications of adhesives
230(1)
11.3 Composition of adhesives
231(1)
11.3.1 Etchant
231(1)
11.3.2 Primer
231(1)
11.3.3 Bonding
231(1)
11.4 Types of enamel etching
232(5)
11.4.1 Acid etching
232(3)
11.4.2 Laser etching
235(1)
11.4.3 Self-etching
236(1)
11.5 Classifications of adhesives
237(4)
11.5.1 Classification based on generations
237(3)
11.5.2 Classification based on clinical steps
240(1)
11.5.3 Classification based on interaction with smear layer
241(1)
11.6 Dentin bonding
241(1)
11.7 Advancement in adhesives
242(5)
11.7.1 Antibacterial properties
242(3)
11.7.2 Bioactive properties
245(2)
11.8 Conclusion
247(1)
References
248(7)
12 Endodontic materials: from old materials to recent advances
255(46)
Mai Saleh Ali
Bassel Kano
12.1 Introduction
256(1)
12.2 Materials used in vital pulp therapy
256(7)
12.2.1 Mineral trioxide aggregates
257(5)
12.2.2 Biodentine (Septodont, Saint-Maur-des-Fosses, France)
262(1)
12.2.3 Bioaggregate (Innovative Bioceramix, Vancouver, BC, Canada)
262(1)
12.2.4 Mineral Trioxide Aggregate Angelus (Londrina, PR, Brazil)
262(1)
12.2.5 Endosequence (Brasseler USA, Savanah, Georgia, United States)
262(1)
12.3 Materials used as root canal irrigants
263(8)
12.3.1 Sodium hypochlorite
263(2)
12.3.2 Ethylenediamine tetra-acetic acid
265(1)
12.3.3 Chlorhexidine
266(1)
12.3.4 Citric acid
267(1)
12.3.5 MTAD
267(2)
12.3.6 Tetraclean
269(1)
12.3.7 Hydrogen peroxide
269(1)
12.3.8 Iodine potassium iodide
269(1)
12.3.9 1-Hydroxyethylidene-1,1 -bisphosphonate
269(1)
12.3.10 QMiX
270(1)
12.4 Intracanal medicaments
271(3)
12.4.1 Calcium hydroxide
271(1)
12.4.2 Chlorhexidine
272(1)
12.4.3 Ledermix
273(1)
12.4.4 Triple antibiotics pastes
273(1)
12.4.5 Bioactive glass
274(1)
12.5 Root canal obturation materials
274(16)
12.5.1 Core obturation materials
274(3)
12.5.2 Root canal sealers (cementing medium)
277(13)
12.6 Root-end filling materials
290(2)
12.6.1 Amalgam
290(1)
12.6.2 Zinc oxide eugenol cements
290(1)
12.6.3 Composite resins (Retroplast)
290(2)
12.6.4 Glass ionomer cements
292(1)
12.6.5 Diaket (3M/ESPE, Seefeld, Germany)
292(1)
12.6.6 Resin---ionomer suspension and compomer
292(1)
12.6.7 Other types of cement
292(1)
12.7 Perforation repair materials
292(1)
12.8 Summary
293(1)
References
293(6)
Further reading
299(2)
13 Fiber-reinforced composites
301(16)
Daniel Varley
Safiyya Yousaf
Mansour Youseffi
Masoud Mozafari
Zohaib Khurshid
Farshid Sefat
13.1 Introduction
302(1)
13.2 Anatomy and physiology of teeth
302(3)
13.2.1 Enamel
303(1)
13.2.2 Dentin
303(1)
13.2.3 Dental pulp
304(1)
13.2.4 Cementum
304(1)
13.2.5 Tooth development
304(1)
13.3 Mechanical properties of teeth
305(1)
13.4 Biomaterials used in dentistry
305(1)
13.4.1 Metals
305(1)
13.4.2 Ceramics
306(1)
13.4.3 Composites
306(1)
13.5 Fiber-reinforced composites
306(5)
13.5.1 Fiber-reinforced composite composition
306(2)
13.5.2 Influencing factors on mechanical properties
308(3)
13.6 Clinical applications of fiber-reinforced composites
311(2)
13.6.1 Tooth restoration
311(1)
13.6.2 Implants
311(1)
13.6.3 Endodontics
312(1)
13.6.4 Prosthodontics
312(1)
13.6.5 Orthodontic
312(1)
13.6.6 Periodontal
312(1)
13.7 Conclusion
313(1)
References
313(2)
Further reading
315(2)
14 Zirconium in dentistry
317(30)
Rafael Pino Vitti
Anderson Catelan
Marina Amaral
Rafael Rocha Pacheco
14.1 Introduction
317(4)
14.2 Classification
321(3)
14.2.1 Feldspathic ceramics
323(1)
14.2.2 Leucite-based ceramics
323(1)
14.2.3 Lithium disilicate---based ceramics
323(1)
14.2.4 Alumina-based ceramics
323(1)
14.2.5 Zirconia-based ceramics
324(1)
14.3 Zirconia in dentistry
324(2)
14.4 Yttrium-stabilized tetragonal zirconia
326(2)
14.5 Zirconia-toughened alumina
328(1)
14.6 Surface topography, clinical treatments of zirconia surface, and adhesion to zirconia in dental restorations
329(4)
14.7 Failure and fractographic analysis of zirconia restorations
333(2)
14.8 Mechanical testing of zirconia ceramics
335(2)
14.9 Limitations and challenges
337(1)
Further reading
338(9)
15 Natural and synthetic bone replacement graft materials for dental and maxillofacial applications
347(30)
Zeeshan Sheikh
Nader Hamdan
Mohamed-Nur Abdallah
Michael Glogauer
Marc Grynpas
15.1 Introduction
347(1)
15.2 Rationale behind use of bone replacement graft materials
348(2)
15.3 Natural tissues and synthetic biomaterials used for bone grafting
350(13)
15.3.1 Autografts
352(1)
15.3.2 Allografts
353(1)
15.3.3 Xenografts
354(1)
15.3.4 Alloplasts
355(8)
15.4 Biocompatibility of bone replacement graft materials and their degradation products
363(1)
15.5 Biodegradation of implanted graft materials and bone formation
363(2)
15.6 Future of bone tissue graft materials
365(1)
References
366(11)
16 Calcium orthophosphates as a dental regenerative material
377(76)
Sergey V. Dorozhkin
16.1 Introduction
377(6)
16.2 General definitions and knowledge
383(2)
16.3 Brief information on current biomedical applications of CaPO4
385(1)
16.4 CaPO4 for dental caries prevention and in dentifrices
385(9)
16.4.1 Toothpastes
386(3)
16.4.2 Chewing gums
389(1)
16.4.3 Teeth remineralization
390(2)
16.4.4 Dentin hypersensitivity treatments
392(2)
16.5 Clinical applications of CaPO4 in dentistry
394(20)
16.5.1 Classification according to the existing CaPO4
395(9)
16.5.2 Classification according to the dental specialties
404(10)
16.6 Tissue engineering approaches
414(2)
16.7 Conclusion
416(1)
References
416(36)
Further reading
452(1)
17 Bioactive glasses---structure and applications
453(24)
Imran Farooq
Saqib Ali
Shehriar Husain
Emm Khan
Robert G. Hill
17.1 Introduction
454(1)
17.2 Bioactivity of glasses
454(2)
17.2.1 Mechanism of action
455(1)
17.2.2 Solubility
455(1)
17.3 Factors affecting apatite formation
456(1)
17.4 Composition of different bioactive glasses
456(4)
17.4.1 Silicate-based bioactive glasses
457(1)
17.4.2 Borate-based bioactive glasses
458(2)
17.5 Methods of synthesis
460(1)
17.6 Clinical applications of bioactive glasses
460(9)
17.6.1 Bone graft substitute
461(1)
17.6.2 Bone regeneration
461(1)
17.6.3 Drug delivery system
462(1)
17.6.4 Coating of implants
463(1)
17.6.5 Use in toothpastes
463(2)
17.6.6 Antibacterial activity
465(1)
17.6.7 Role in minimal invasive dentistry
465(1)
17.6.8 Bioactive glass scaffolds
465(3)
17.6.9 Particle size of bioactive glasses and its effect on various clinical applications
468(1)
17.7 Future of bioactive glasses
469(1)
17.8 Conclusion
470(1)
References
470(6)
Further reading
476(1)
18 Nanotechnology and nanomaterials in dentistry
477(30)
Muhammad S. Zafar
Ahmad A. Alnazzawi
Mothanna Alrahabi
Muhammad A. Fareed
Shariq Najeeb
Zohaib Khurshid
18.1 Introduction
477(1)
18.2 Natural biomaterials and nanoscience
478(2)
18.3 General properties of nanomaterials
480(1)
18.4 Dental applications of nanobiomaterials
481(11)
18.4.1 Nanobiomaterials for preventive dentistry
482(1)
18.4.2 Nanomaterials for periodontics
483(1)
18.4.3 Nanomaterials for dental implants
484(2)
18.4.4 Restorative nanobiomaterials
486(2)
18.4.5 Endodontic nanobiomaterials
488(2)
18.4.6 Nanomaterials and endodontic regeneration
490(1)
18.4.7 Nanomaterials and tissue engineering
490(1)
18.4.8 Electrospun nanomaterials
491(1)
18.5 Potential of nanomaterials
492(2)
18.6 Conclusive remarks
494(1)
References
494(13)
19 Digital dentistry
507(34)
Touraj Nejatian
Sanam Almassi
Azita Farhadi Shamsabadi
Gaurav Vasudeva
Zoe Hancox
Amritpaul Singh Dhillon
Farshid Sefat
19.1 Introduction
508(1)
19.2 Digital radiography and magnetic resonance imaging
508(8)
19.2.1 Intraoral, extraoral, including cone beam computed tomography
508(1)
19.2.2 Clinical applications
509(3)
19.2.3 Limitations
512(4)
19.3 Caries detection
516(1)
19.4 Photography and shade selection
516(1)
19.5 Computer-aided design---computer-aided manufacturing systems in dentistry
517(4)
19.5.1 Chairside milling
518(1)
19.5.2 Laboratory and industrial milling
518(1)
19.5.3 Machining of the restorations
519(1)
19.5.4 Three-dimensional printing
519(2)
19.6 Computer-supported implant dentistry
521(9)
19.6.1 Three-dimensional printing in implant dentistry
521(1)
19.6.2 Recent advances in implant technologies
522(2)
19.6.3 Computer-guided implant surgery
524(1)
19.6.4 Computer-navigated implant surgery
524(3)
19.6.5 Computer-aided design---computer-aided manufacturing systems in implant restorative dentistry
527(1)
19.6.6 Prosthetic abutments
528(1)
19.6.7 Computer-aided design---computer-aided manufacturing abutments in implant dentistry
528(1)
19.6.8 Materials used
529(1)
19.6.9 Computer-aided design-computer-aided manufacturing custom implant abutments
529(1)
19.7 Lasers and dental applications
530(3)
19.7.1 History of lasers in dentistry
531(1)
19.7.2 Types of lasers
531(1)
19.7.3 Mechanism of laser action
532(1)
19.8 Technology and dental education
533(2)
References
535(5)
Further reading
540(1)
20 Biomaterials used in orthodontics: brackets, archwires, and clear aligners
541(40)
Mohamed-Nur Abdallah
Tiantong Lou
Jean-Marc Retrouvey
Sunjay Suri
20.1 Introduction
541(1)
20.2 Orthodontic brackets
542(11)
20.2.1 Metal brackets
542(8)
20.2.2 Plastic brackets
550(1)
20.2.3 Ceramic brackets
551(2)
20.3 Orthodontic archwires
553(9)
20.3.1 Properties of orthodontic archwires
553(2)
20.3.2 Classification of orthodontic archwires
555(7)
20.4 Clear aligners
562(10)
20.4.1 Material composition
562(3)
20.4.2 The thermoforming process
565(1)
20.4.3 Forces of thermoplastic aligners
565(2)
20.4.4 Mechanical properties
567(2)
20.4.5 Attachments
569(2)
20.4.6 Cytotoxicity
571(1)
20.5 Final remarks
572(1)
References
572(9)
21 Dental implants materials and surface treatments
581(18)
Shariq Najeeb
Maria Mali
Azeem Ul Yaqin Syed
Muhammad Sohail Zafar
Zohaib Khurshid
Abdullah Alwadaani
Jukka P. Matinlinna
21.1 Introduction
581(2)
21.2 Osseointegration: cellular and biomaterial aspects
583(1)
21.3 Biomaterial properties and implant surface characteristics
584(1)
21.4 Biomechanical properties of dental implants
584(1)
21.5 Surface properties
585(1)
21.6 Type of dental implant material
586(2)
21.6.1 Alveolar bone properties
587(1)
21.6.2 Influence of oral health and systemic disease on implant survival
587(1)
21.7 Modification of the dental implants
588(2)
21.7.1 Modification of titanium implants
588(2)
21.8 Functionally graded/hierarchical dental implant surfaces
590(1)
21.9 Modification of the polyetheretherketone dental implants
590(2)
21.10 Modification of zirconia implants
592(1)
21.11 Conclusion
592(1)
References
592(7)
22 Graphene to improve the physicomechanical properties and bioactivity of the cements
599(16)
Vinicius Rosa
Francisco Javier Rodnguez-Lozano
Kyung-san Min
22.1 Introduction
599(1)
22.1.1 Graphene and its derivatives
599(1)
22.2 Graphene to improve cementitious materials
600(9)
22.3 Conclusion
609(1)
References
609(6)
23 Biomaterials for maxillofacial prosthetic rehabilitation
615(28)
Waqas Tanveer
23.1 Highlights
616(1)
23.2 Historical background
616(1)
23.3 Ideal properties of maxillofacial material
617(1)
23.4 Search for ideal materials for maxillofacial rehabilitation
617(3)
23.4.1 Acrylic resins (1940-60)
617(2)
23.4.2 Polyvinylchloride and copolymer
619(1)
23.4.3 Chlorinated polyethylene
619(1)
23.4.4 Polyurethane elastomers (1970-90)
619(1)
23.4.5 Thermoset urethane elastomers
619(1)
23.4.6 Silicones (1960-70)
620(1)
23.5 Silicones
620(2)
23.5.1 Polymer structures
620(2)
23.6 Classification of maxillofacial silicones
622(3)
23.6.1 Classification of silicones according to application
622(3)
23.7 Types of maxillofacial silicones
625(3)
23.7.1 Most common room temperature vulcanizing silicones
625(2)
23.7.2 Medical grade liquid silicone elastomers
627(1)
23.7.3 Recommendations
627(1)
23.7.4 Medical grade VerSiTal silicone elastomers
628(1)
23.8 M-511 platinum silicone rubber
628(4)
23.8.1 Silicone fluids
629(1)
23.8.2 Properties
629(1)
23.8.3 Types of silicone fluids
629(3)
23.9 Primers
632(1)
23.10 Soft liners and tissue conditioners
633(2)
23.10.1 Soft liner
633(1)
23.10.2 Coe-Comfort and Coe-Soft
633(2)
23.10.3 Sculpturing clays and waxes
635(1)
23.11 Coloring agents
635(3)
23.11.1 Colored flocking
635(1)
23.11.2 Intrinsic stains
636(1)
23.11.3 Extrinsic colors
636(1)
23.11.4 Acetoxy silastic adhesives
636(2)
23.12 Skin adhesives
638(1)
References
639(4)
24 Biomaterials for craniofacial tissue engineering and regenerative dentistry
643(32)
Sukumaran Anil
Elna Paul Chalisserry
Seung Yun Nam
Jayachandran Venkatesan
24.1 Introduction
644(3)
24.1.1 Scaffolds for bone tissue engineering
645(1)
24.1.2 Functions and features of scaffolds
646(1)
24.1.3 Classification of biomaterials
646(1)
24.2 Natural biomaterials
647(7)
24.2.1 Collagen
647(1)
24.2.2 Fibrin
648(1)
24.2.3 Alginate
649(1)
24.2.4 Silk
650(1)
24.2.5 Hyaluronate
651(1)
24.2.6 Chitosan
651(2)
24.2.7 Agarose
653(1)
24.2.8 Elastin
653(1)
24.3 Synthetic biomaterials
654(1)
24.3.1 Polyethyleneglycol
654(1)
24.3.2 Poly-e-caprolactone
654(1)
24.3.3 Polyglycolic acid
655(1)
24.4 Bioceramics
655(3)
24.4.1 Tricalcium phosphate
655(1)
24.4.2 Hydroxyapatite
656(1)
24.4.3 Tricalcium phosphate/hydroxyapatite biphasic ceramics (biphasic calcium phosphate)
657(1)
24.4.4 Bioactive glasses
657(1)
24.5 Metals
658(3)
24.5.1 Biodegradable metal scaffolds
658(1)
24.5.2 Titanium
659(1)
24.5.3 Zirconia
660(1)
24.6 Bioactive restorative materials
661(2)
24.6.1 Mineral trioxide aggregate
661(1)
24.6.2 Biodentine
662(1)
24.7 Three-dimensional printed scaffolds
663(1)
24.8 Conclusion
664(1)
References
664(11)
25 Applications of silver diamine fluoride in management of dental caries
675(26)
Wei-Te Huang
Saroash Shahid
Paul Anderson
25.1 Introduction
675(1)
25.2 Brief history
676(1)
25.3 Clinical effects of silver diamine fluoride applications on caries management
676(9)
25.3.1 Management of coronal caries in children
677(6)
25.3.2 Management of coronal caries in adults
683(1)
25.3.3 Management of root caries in the elderly
684(1)
25.4 Cariostatic mechanism of silver diamine fluoride
685(7)
25.4.1 Cariostatic effects of silver diamine fluoride on dental mineral
685(5)
25.4.2 Cariostatic effects of silver diamine fluoride on cariogenic bacteria
690(2)
25.4.3 Cariostatic effects of silver diamine fluoride on organic content of dentine
692(1)
25.5 Safety of silver diamine fluoride treatment
692(2)
25.6 Conclusion
694(1)
References
694(7)
Index 701
Dr. Zohaib Khurshid (Scopus h-index: 23) is a lecturer and course coordinator at the Prosthodontics and Dental Implantology Department, School of Dentistry, King Faisal University, Saudi Arabia. His research interests include biomaterials, dental bone grafts, salivary diagnostics, dental education, dental biomaterial characterization, and dental caries remineralization. He has authored more than 100 publications available in Scopus, including review papers, research papers, systematic reviews and meta-analysis, book chapters, editorials, news magazine reports, and scoping studies. He participates in editorial activities with the 'European Journal of Dentistry' (EJD); 'Journal of Oral Research' (JOralRes); 'Journal of Dentistry'; 'Materials'; 'Molecules'; 'Current Issues in Molecular Biology'; 'Polymer'; 'International Journal of Molecular Sciences' (IJMS); and the 'European Journal of Dental Research and Biomaterials'. He has edited two other books with Elsevier: 'Advanced Dental Biomaterials' and 'Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues'. He is also a Fellow of the Higher Education Academy (FHEA) and a Member of The Faculty of Dental Trainers (MDTFEd) of the Faculty of Dental Surgery at the Royal College of Surgeons of Edinburgh. He was also honored with the Membership of the Faculty of Dental Surgery from the Royal College of Physicians and Surgeons of Glasgow (MFDS RCPS). Dr. Shariq Najeeb completed his clinical dentistry training at the University of Karachi, Pakistan, in 2010 and his masters in dental materials from the University of Sheffield in 2013. During his masters, he worked on developing a novel electrospun guided tissue regeneration membrane for periodontal applications. In addition, he has published more than 40 peer-reviewed articles and book chapters. His research has focused on novel approaches in treating periodontitis, endodontics, dental implants, biomaterials for tissue regeneration, and data synthesis and quality assessment of dental literature. He has served as the director of the course in dental materials at Al-Farabi Colleges (Saudi Arabia). At present, he is the director of the Institute of Collaborative Dental Education and Research and an adjunct professor of dentistry at Western University, Canada. Dr. Muhammad Zafar did PhD from Quaid-I- Azam University Islamabad-Pakistan in 2011. Currently he is working as Associate Professor in the Department of Plant Sciences, Quaid-i-Azam University, Islamabad Pakistan. He is a renowned active scientist in the field of medicinal plants, plant biodiversity and Plant Systematics and taxonomy. He is the founder of first nutraceutical and traditional medicinal plant Lab. and biofuel and Biomass energy laboratory at Quaid-i-Azam University Islamabad Pakistan. Dr. Zafar has over 450 publications in diverse fields of Plant Sciences including 406 research publications, 11 international books, 16 chapters in books published by various publishers. Dr. Farshid Sefat is Associate Professor and Programme Leader in the Biomedical and Electronic Engineering Department at the University of Bradford (UK). He was head of Biomedical Engineering Department at King Faisal University (Saudi Arabia) and Visiting Professor at Stevens Institute of Technology (New Jersey, USA). He completed his post doctorate research assistant at University of Sheffield (UK) in cornea tissue engineering. Dr. Sefat received his Ph.D. and BEng. degrees from University of Bradford in Biomedical Engineering. His research is based on developing biomaterials to control cellular behavior with particular emphasis in developing engineered materials for various tissue engineering applications. Hes an author of >150 peer-reviewed journal articles, editorials, and review papers and >80 book chapters/edited books. Hes on the editorial boards and reviewer of >30 numerous journals including Materials Today, Acta Biomaterialia, IEEE, Bone, MDPI, Journal of Orthopaedics & Rheumatology, Materials Science and Engineering C and Journal of Biomechanics.