Muutke küpsiste eelistusi

E-raamat: Advanced Digital Optical Communications

(Huawei Technologies, Munich, Germany)
  • Formaat: 937 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 22-Nov-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351831277
  • Formaat - EPUB+DRM
  • Hind: 118,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 937 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 22-Nov-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351831277

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This second edition of Digital Optical Communications provides a comprehensive treatment of the modern aspects of coherent homodyne and self-coherent reception techniques using algorithms incorporated in digital signal processing (DSP) systems and DSP-based transmitters to overcome several linear and nonlinear transmission impairments and frequency mismatching between the local oscillator and the carrier, as well as clock recovery and cycle slips. These modern transmission systems have emerged as the core technology for Tera-bits per second (bps) and Peta-bps optical Internet for the near future.Featuring extensive updates to all existing chapters, Advanced Digital Optical Communications, Second Edition:Contains new chapters on optical fiber structures and propagation, optical coherent receivers, DSP equalizer algorithms, and high-order spectral DSP receiversExamines theoretical foundations, practical case studies, and MATLAB® and Simulink® models for simulation transmissionsIncludes new end-of-chapter practice problems and useful appendices to supplement technical informationDownloadable content available with qualifying course adoptionAdvanced Digital Optical Communications, Second Edition supplies a fundamental understanding of digital communication applications in optical communication technologies, emphasizing operation principles versus heavy mathematical analysis. It is an ideal text for aspiring engineers and a valuable professional reference for those involved in optics, telecommunications, electronics, photonics, and digital signal processing.

Arvustused

"This book is excellent and potentially can be used by many universities. I have not seen that any books are better than this book in this topic." John Xiupu Zhang, Concordia University, Montreal, Quebec, Canada

"The main strengths of the book are that it is comprehensive, covers the material in depth, and is up-to-date, covering topics which, in many cases, are still being actively investigated by the research community. It provides explicit guidance on the computer simulation of optical communication systems and is very accessible, being well structured and clearly written." Robert Killey, University College London

Preface xxiii
Acknowledgments xxv
Author xxvii
Acronyms xxix
Chapter 1 Introduction 1(20)
1.1 Digital Optical Communications and Transmission Systems: Challenging Issues
1(2)
1.2 Enabling Technologies
3(10)
1.2.1 Modulation Formats and Optical Signal Generation
3(5)
1.2.1.1 Binary Level
3(2)
1.2.1.2 Binary and Multilevel
5(1)
1.2.1.3 In-Phase and Quadrature-Phase Channels
6(1)
1.2.1.4 External Optical Modulation
7(1)
1.2.2 Advanced Modulation Formats
8(1)
1.2.3 Incoherent Optical Receivers
9(1)
1.2.4 DSP-Coherent Optical Receivers
10(1)
1.2.5 Transmission of Ultra-Short Pulse Sequence
10(1)
1.2.6 Electronic Equalization
10(2)
1.2.6.1 Feed-Forward Equalizer
11(1)
1.2.6.2 Decision Feedback Equalization
12(1)
1.2.6.3 Minimum Mean Square Error Equalization
12(1)
1.2.6.4 Placement of Equalizers
12(1)
1.2.6.5 MLSE Electronic Equalizers
12(1)
1.2.7 Ultra-Short Pulse Transmission
12(1)
1.3 Organization of the Book
Chapters
13(4)
References
17(4)
Chapter 2 Optical Fibers 21(62)
2.1 Overview
21(1)
2.2 Optical Fiber: General Properties
22(13)
2.2.1 Geometrical Structures and Index Profile
22(2)
2.2.2 Fundamental Mode of Weakly Guiding Fibers
24(11)
2.2.2.1 Solutions of the Wave Equation for Step-Index Fiber
25(1)
2.2.2.2 Single-Mode and Few-Mode Conditions
26(2)
2.2.2.3 Gaussian Approximation: Fundamental Mode Revisited
28(5)
2.2.2.4 Cutoff Properties
33(1)
2.2.2.5 Power Distribution
33(1)
2.2.2.6 Approximation of Spot Size r0 of Step-Index Fiber
34(1)
2.2.3 Equivalent Step-Index Description
35(1)
2.3 Nonlinear Effects
35(6)
2.3.1 Nonlinear Self-Phase Modulation Effects
36(1)
2.3.2 Self-Phase Modulation
36(1)
2.3.3 Cross-Phase Modulation
37(1)
2.3.4 Stimulated Scattering Effects
38(3)
2.3.4.1 Stimulated Brillouin Scattering
38(1)
2.3.4.2 Stimulated Raman Scattering
39(1)
2.3.4.3 Four-Wave Mixing Effects
40(1)
2.4 Signal Attenuation in Optical Fibers
41(3)
2.4.1 Intrinsic or Material Absorption Losses
41(1)
2.4.2 Waveguide Losses
42(1)
2.4.3 Attenuation Coefficient
43(1)
2.5 Signal Distortion through Optical Fibers
44(9)
2.5.1 Material Dispersion
45(3)
2.5.2 Waveguide Dispersion
48(3)
2.5.2.1 Alternative Expression for Waveguide Dispersion Parameter
50(1)
2.5.2.2 Higher-Order Dispersion
51(1)
2.5.3 Polarization-Mode Dispersion
51(2)
2.6 Transfer Function of Single-Mode Fibers
53(11)
2.6.1 Linear Transfer Function
53(6)
2.6.2 Nonlinear Fiber Transfer Function
59(3)
2.6.3 Transmission Bit Rate and the Dispersion Factor
62(2)
2.7 Fiber Nonlinearity Revisited
64(7)
2.7.1 SPM and XPM Effects
64(1)
2.7.2 SPM and Modulation Instability
65(1)
2.7.3 Effects of Mode Hopping
66(1)
2.7.4 SPM and Intrachannel Nonlinear Effects
66(4)
2.7.5 Nonlinear Phase Noises in Cascaded Multispan Optical Link
70(1)
2.8 Special Dispersion Optical Fibers
71(1)
2.9 SMF Transfer Function: Simplified Linear and Nonlinear Operating Region
72(5)
2.10 Numerical Solution: Split-Step Fourier Method
77(3)
2.10.1 Symmetrical SSFM
77(1)
2.10.1.1 Modeling of PMD
78(1)
2.10.1.2 Optimization of Symmetrical SSFM
79(1)
2.11 Concluding Remarks
80(1)
References
80(3)
Chapter 3 Optical Transmitters 83(52)
3.1 Optical Modulators
83(6)
3.1.1 Phase Modulators
84(1)
3.1.2 Intensity Modulators
84(4)
3.1.2.1 Phasor Representation and Transfer Characteristics
85(1)
3.1.2.2 Chirp-Free Optical Modulators
86(2)
3.1.3 Structures of Photonic Modulators
88(1)
3.1.4 Operating Parameters of Optical Modulators
89(1)
3.2 Return-to-Zero Optical Pulses
89(5)
3.2.1 Generation
89(1)
3.2.2 Phasor Representation
90(4)
3.2.2.1 Phasor Representation of CSRZ Pulses
91(2)
3.2.2.2 Phasor Representation of RZ33 Pulses
93(1)
3.3 Differential Phase Shift Keying
94(1)
3.3.1 Background
94(1)
3.3.2 Optical DPSK Transmitter
95(1)
3.4 Generation of Modulation Formats
95(16)
3.4.1 Amplitude-Modulation ASK-NRZ and ASK-RZ
95(2)
3.4.1.1 Amplitude-Modulation 00K-RZ Formats
95(2)
3.4.1.2 Amplitude-Modulation CSRZ Formats
97(1)
3.4.2 Discrete Phase Modulation NRZ Formats
97(5)
3.4.2.1 Differential Phase Shift Keying
97(2)
3.4.2.2 Differential Quadrature Phase Shift Keying
99(1)
3.4.2.3 Generation of M-ary Amplitude Differential Phase Shift Keying Using One MZIM
100(2)
3.4.3 Continuous Phase Modulation PM-NRZ Formats
102(6)
3.4.3.1 Linear and Nonlinear MSK
103(2)
3.4.3.2 MSK as a Special Case of CPFSK
105(1)
3.4.3.3 MSK as ODQPSK
106(1)
3.4.3.4 Configuration of Photonic MSK Transmitter Using Two Cascaded Electro-Optic Phase Modulators
106(1)
3.4.3.5 Configuration of Optical MSK Transmitter Using Mach-Zehnder Intensity Modulators: I-Q Approach
106(2)
3.4.4 Single-Sideband Optical Modulators
108(1)
3.4.4.1 Operating Principles
108(1)
3.4.4.2 Optical RZ MSK
109(1)
3.4.5 Multicarrier Multiplexing Optical Modulators
109(2)
3.4.6 Spectra of Modulation Formats
111(1)
3.5 Spectral Characteristics of Digital Modulation Formats
111(5)
3.6 I-Q Integrated Modulators
116(3)
3.6.1 In-Phase and Quadrature-Phase Optical Modulators
116(2)
3.6.2 I-Q Modulator and Electronic Digital Multiplexing for Ultra-High Bit Rates
118(1)
3.7 Digital-to-Analog Converter for DSP-Based Modulation and Transmitter
119(5)
3.7.1 Fujitsu DAC
119(1)
3.7.2 Structure
120(1)
3.7.3 Generation of I and Q Components
121(3)
3.8 Concluding Remarks
124(1)
3.9 Problems on Transmitter (Tx) for Advanced Modulation Formats for Long Haul Transmission Systems
125(7)
References
132(3)
Chapter 4 Optical Receivers and Transmission Performance: Fundamentals 135(68)
4.1 Introduction
135(2)
4.2 Digital Optical Receivers
137(3)
4.2.1 Photonic and Electronic Noise
137(3)
4.2.1.1 Electronic Noise of Receiver
137(1)
4.2.1.2 Shot Noise
137(1)
4.2.1.3 Thermal Noise
138(1)
4.2.1.4 ASE Noise of Optical Amplifier
138(1)
4.2.1.5 Optical Amplifier Noise Figure
139(1)
4.2.1.6 Electronic Beating Noise
139(1)
4.2.1.7 Accumulated ASE Noise in Cascaded Optical Amplifiers
139(1)
4.3 Performance Evaluation of Binary Amplitude Modulation Format
140(6)
4.3.1 Received Signals
140(2)
4.3.1.1 Case 1: OFF or a Transmitted 0 Is Received
141(1)
4.3.1.2 Case 2: ON Transmitted 1 Received
141(1)
4.3.2 Probability Distribution Functions
142(1)
4.3.3 Receiver Sensitivity
143(2)
4.3.4 OSNR and Noise Impact
145(1)
4.3.4.1 Optical Signal-to-Noise Ratio
145(1)
4.3.4.2 Determination of the Impact of Noise
145(1)
4.4 Quantum Limit of Optical Receivers under Different Modulation Formats
146(8)
4.4.1 Direct Detection
147(2)
4.4.2 Coherent Detection
149(1)
4.4.3 Coherent Detection with Matched Filter
149(7)
4.4.3.1 Coherent ASK Systems
150(1)
4.4.3.2 Coherent Phase and Frequency Shift Keying Systems
151(3)
4.5 Binary Coherent Optical Receiver
154(2)
4.6 Noncoherent Detection for Optical DPSK and MSK
156(1)
4.6.1 Photonic Balanced Receiver
156(1)
4.6.2 Optical Frequency Discrimination Receiver
157(1)
4.7 Transmission Impairments
157(6)
4.7.1 Chromatic Dispersion
157(1)
4.7.2 Chromatic Linear Dispersion
158(3)
4.7.3 Polarization-Mode Dispersion
161(1)
4.7.4 Fiber Non li nearity
162(1)
4.8 MATLAB® and Simulink® Simulator for Optical Communications Systems
163(9)
4.8.1 Fiber Propagation Model
163(3)
4.8.1.1 Nonlinear Schrodinger Equation
163(1)
4.8.1.2 Symmetrical Split-Step Fourier Method
163(2)
4.8.1.3 Modeling of PMD
165(1)
4.8.1.4 Optimizing the Symmetrical SSFM
165(1)
4.8.1.5 Fiber Propagation in Linear Domain
165(1)
4.8.2 Nonlinear Effects via Fiber Propagation Model
166(6)
4.8.2.1 SPM Effects
166(1)
4.8.2.2 XPM Effects
167(1)
4.8.2.3 FWM Effects
168(2)
4.8.2.4 SRS Effects
170(2)
4.8.2.5 SBS Effects
172(1)
4.9 Performance Evaluation
172(14)
4.9.1 BER from Monte Carlo Method
172(1)
4.9.2 BER and Q Factor from Probability Distribution Functions
173(1)
4.9.3 Histogram Approximation
174(1)
4.9.4 Optical SNR
174(1)
4.9.5 Eye Opening Penalty
174(2)
4.9.6 Statistical Evaluation Techniques
176(1)
4.9.6.1 Multi-Gaussian Distributions via Expectation Maximization Theorem
176(1)
4.9.6.2 Selection of Number of Gaussian Distributions for MGD Fitting
177(1)
4.9.7 Generalized Pareto Distribution
177(8)
4.9.7.1 Selection of Threshold for GPD Fitting
179(1)
4.9.7.2 Validation of Novel Statistical Methods
180(5)
4.9.8 Novel BER Statistical Techniques
185(20)
4.9.8.1 MGDs and EM Theorem
185(1)
4.10 Effects of Source Linewidth
186(2)
4.11 Concluding Remarks
188(1)
4.12 Problems
189(9)
Appendix 4A: Sellmeier's Coefficients for Different Core Materials
198(1)
Appendix 4B: Total Equivalent Electronic Noise
198(1)
References
199(4)
Chapter 5 Optical Coherent Detection and Processing Systems 203(46)
5.1 Introduction
203(1)
5.2 Coherent Receiver Components
204(1)
5.3 Coherent Detection
205(16)
5.3.1 Optical Heterodyne Detection
208(6)
5.3.1.1 ASK Coherent System
209(2)
5.3.1.2 PSK Coherent System
211(1)
5.3.1.3 Differential Detection
212(1)
5.3.1.4 FSK Coherent System
213(1)
5.3.2 Optical Homodyne Detection
214(6)
5.3.2.1 Detection and Optical PLL
214(1)
5.3.2.2 Quantum Limit Detection
215(1)
5.3.2.3 Linewidth Influences
216(4)
5.3.3 Optical Intradyne Detection
220(1)
5.4 Self-Coherent Detection and Electronic DSP
221(2)
5.5 Electronic Amplifiers: Responses and Noise
223(3)
5.5.1 Introduction
223(1)
5.5.2 Wideband TIAs
224(1)
5.5.2.1 Single Input, Single Output
224(1)
5.5.2.2 Differential Inputs, Single/Differential Output
224(1)
5.5.3 Amplifier Noise Referred to Input
224(2)
5.6 Digital Signal Processing Systems and Coherent Optical Reception
226(19)
5.6.1 DSP-Assisted Coherent Detection
226(3)
5.6.1.1 DSP-Based Reception Systems
227(2)
5.6.2 Coherent Reception Analysis
229(5)
5.6.2.1 Sensitivity
229(3)
5.6.2.2 Shot-Noise-Limited Receiver Sensitivity
232(1)
5.6.2.3 Receiver Sensitivity under Nonideal Conditions
233(1)
5.6.3 Digital Processing Systems
234(16)
5.6.3.1 Effective Number of Bits
236(7)
5.6.3.2 Digital Processors
243(2)
5.7 Concluding Remarks
245(1)
References
246(3)
Chapter 6 Differential Phase Shift Keying Photonic Systems 249(44)
6.1 Introduction
249(1)
6.2 Optical DPSK Modulation and Formats
250(10)
6.2.1 Generation of RZ Pulses
250(3)
6.2.2 Phasor Representation
253(1)
6.2.3 Phasor Representation of CSRZ Pulses
253(2)
6.2.4 Phasor Representation of RZ33 Pulses
255(1)
6.2.5 Discrete Phase Modulation-DPSK
256(2)
6.2.5.1 Principles of DPSK and Theoretical Treatment of DPSK and DQPSK Transmission
256(1)
6.2.5.2 Optical DPSK Transmitter
257(1)
6.2.6 DPSK-Balanced Receiver
258(2)
6.3 DPSK Transmission Experiment
260(10)
6.3.1 Components and Operational Characteristics
260(1)
6.3.2 Spectra of Modulation Formats
260(1)
6.3.3 Dispersion Tolerance of Optical DPSK Formats
260(4)
6.3.4 Optical Filtering Effects
264(4)
6.3.5 Performance of CSRZ-DPSK over a Dispersion-Managed Optical Transmission Link
268(1)
6.3.6 Mutual Impact of Adjacent 10G and 40G DWDM Channels
269(1)
6.4 DQPSK Modulation Format
270(11)
6.4.1 DQPSK
270(3)
6.4.2 Offset DQPSK Modulation Format
273(3)
6.4.2.1 Influence of the Minimum Symbol Distance on Receiver Sensitivity
275(1)
6.4.2.2 Influence of Self-Homodyne Detection on Receiver Sensitivity
276(1)
6.4.3 MATLAB® and Simulink® Model
276(5)
6.4.3.1 Simulink® Model
276(2)
6.4.3.2 Eye Diagrams
278(3)
6.5 Comparisons of Different Formats and ASK and DPSK
281(7)
6.5.1 BER and Receiver Sensitivity
281(2)
6.5.1.1 RZ-ASK and NRZ-ASK
281(1)
6.5.1.2 RZ-DPSK and NRZ-DQPSK
281(1)
6.5.1.3 RZ-ASK and NRZ-DQPSK
282(1)
6.5.2 Dispersion Tolerance
283(1)
6.5.3 PMD Tolerance
284(1)
6.5.4 Robustness toward Nonlinear Effects
284(11)
6.5.4.1 Robustness toward SPM
284(1)
6.5.4.2 Robustness toward Cross-Phase Modulation
284(1)
6.5.4.3 Robustness toward Four-Wave Mixing
285(1)
6.5.4.4 Robustness toward Stimulated Raman Scattering
286(1)
6.5.4.5 Robustness toward Stimulated Brillouin Scattering
287(1)
6.6 Concluding Remarks 287 Appendix 6A: MATLAB® and Simulink® Model for DQPSK Optical System
288(3)
References
291(2)
Chapter 7 Multilevel Amplitude and Phase Shift Keying Optical Transmission 293(72)
7.1 Introduction
293(2)
7.2 Amplitude and Differential Phase Modulation
295(17)
7.2.1 ASK Modulation
295(4)
7.2.1.1 NRZ-ASK Modulation
295(1)
7.2.1.2 RZ-ASK Modulation
296(1)
7.2.1.3 CSRZ-ASK Modulation
296(3)
7.2.2 Differential Phase Modulation
299(8)
7.2.3 Comparison of Different Amplitude and Phase Optical Modulation Formats
307(1)
7.2.4 Multilevel Optical Transmitter Using Single Dual-Drive MZIM Transmitter
308(4)
7.3 MADPSK Optical Transmission
312(19)
7.3.1 Performance Evaluation
313(2)
7.3.2 Implementation of MADPSK Transmission Models
315(1)
7.3.3 Transmitter Model
315(1)
7.3.4 Receiver Model
315(1)
7.3.5 Transmission Fiber and Dispersion Compensation Fiber Model
316(3)
7.3.6 Transmission Performance
319(12)
7.3.6.1 Signal Spectrum, Signal Constellation, and Eye Diagram
319(1)
7.3.6.2 BER Evaluation
319(3)
7.3.6.3 ASK Subsystem Error Probability
322(1)
7.3.6.4 DQPSK Subsystem Error Probability Evaluation
323(1)
7.3.6.5 MADPSK System BER Evaluation
324(2)
7.3.6.6 Chromatic DT
326(1)
7.3.6.7 Critical Issues
327(4)
7.3.6.8 Offset Detection
331(1)
7.4 Star 16-QAM Optical Transmission
331(30)
7.4.1 Introduction
331(1)
7.4.2 Design of 16-QAM Signal Constellation
332(1)
7.4.3 Signal Constellation
332(1)
7.4.4 Optimum Ring Ratio for Star Constellation
332(3)
7.4.4.1 Square 16-QAM
334(1)
7.4.4.2 Offset-Square 16-QAM
335(1)
7.4.5 Detection Methods
335(2)
7.4.5.1 Direct Detection
336(1)
7.4.5.2 Coherent Detection
336(1)
7.4.6 Transmitter Design
337(1)
7.4.7 Receiver for 16-Star QAM
338(10)
7.4.7.1 Coherent Detection Receiver without Phase Estimation
339(2)
7.4.7.2 Coherent Detection Receiver with Phase Estimation
341(1)
7.4.7.3 Direct Detection Receiver
342(1)
7.4.7.4 Coherent Receiver without Phase Estimation
343(5)
7.4.7.5 Remarks
348(1)
7.4.8 Other Multilevel and Multi-Subcarrier Modulation Formats for 100 Gbps Ethernet Transmission
348(11)
7.4.8.1 Multilevel Modulation
348(2)
7.4.8.2 Optical Orthogonal Frequency Division Multiplexing
350(3)
7.4.8.3 100 Gbps 8-DPSK-2-ASK 16-Star QAM
353(6)
7.4.9 Concluding Remarks
359(11)
7.4.9.1 Offset MADPSK Modulation
360(1)
7.4.9.2 MAMSK Modulation
360(1)
7.4.9.3 Star QAM Coherent Detection
360(1)
References
361(4)
Chapter 8 Continuous Phase Modulation Format Optical Systems 365(22)
8.1 Introduction
365(3)
8.2 Generation of Optical MSK-Modulated Signals
368(2)
8.3 Detection of Mary CPFSK-Modulated Optical Signal
370(4)
8.3.1 Optical MSK Transmitter Using Parallel I-Q MZIMs
371(3)
8.3.1.1 Linear MSK
371(1)
8.3.1.2 Weakly Nonlinear MSK
372(1)
8.3.1.3 Strongly Nonlinear MSK
372(2)
8.3.2 Optical MSK Receivers
374(1)
8.4 Optical Binary Amplitude MSK Format
374(4)
8.4.1 Generation
374(1)
8.4.2 Optical MSK
375(3)
8.5 Numerical Results and Discussion
378(6)
8.5.1 Transmission Performance of Linear and Nonlinear Optical MSK Systems
378(4)
8.5.2 Transmission Performance of Binary Amplitude Optical MSK Systems
382(2)
8.6 Concluding Remarks
384(1)
References
385(2)
Chapter 9 Frequency Discrimination Reception for Optical Minimum Shift Keying 387(26)
9.1 Introduction
387(1)
9.2 ONFDR Operational Principles
388(2)
9.3 Receiver Modeling
390(3)
9.4 Receiver Design
393(3)
9.4.1 Optical Filter Passband
393(2)
9.4.2 Center Frequency of the Optical Filter
395(1)
9.4.3 Optimum ODL
395(1)
9.5 ONFDR Optimum Bandwidth and Center Frequency
396(2)
9.6 Receiver Performance: Numerical Validation
398(1)
9.7 ONFDR Robustness to Chromatic Dispersion
398(6)
9.7.1 Dispersion Tolerance
401(1)
9.7.2 10 Gbps Transmission
402(1)
9.7.3 Robustness to PMD of ONFDR
403(1)
9.7.4 Resilience to Nonlinearity (SPM) of ONFDR
404(1)
9.7.5 Transmission Limits of OFDR-Based Optical MSK Systems
404(1)
9.8 Dual-Level Optical MSK
404(6)
9.8.1 Generation Scheme
407(1)
9.8.2 Incoherent Detection Technique
407(1)
9.8.3 Optical Power Spectrum
407(1)
9.8.4 Receiver Sensitivity
407(2)
9.8.5 Remarks
409(1)
9.9 Concluding Remarks
410(1)
References
411(2)
Chapter 10 Partial Responses and Single-Sideband Optical Modulation 413(54)
10.1 Partial Responses: DBM Formats
414(14)
10.1.1 Introduction
414(1)
10.1.2 DBM Formatter
415(2)
10.1.3 40 Gbps DB Optical Fiber Transmission Systems
417(1)
10.1.4 Electro-Optic Duobinary Transmitter
417(2)
10.1.5 DB Encoder
419(1)
10.1.6 External Modulator
419(2)
10.1.7 DB Transmitters and Precoder
421(2)
10.1.8 Alternative Phase DB Transmitter
423(1)
10.1.9 Fiber Propagation
423(5)
10.2 DB Direct Detection Receiver
428(2)
10.3 System Transmission and Performance
430(19)
10.3.1 DB Encoder
431(1)
10.3.2 Transmitter
431(2)
10.3.3 Transmission Performance
433(3)
10.3.4 Alternating-Phase and Variable-Pulse-Width DB: Experimental Setup and Transmission Performance
436(10)
10.3.4.1 Transmission Setup
436(1)
10.3.4.2 Test Bed for Variable-Pulse-Width Alternating-Phase DBM Optical Transmission
437(6)
10.3.4.3 CSRZ-DPSK Experimental Transmission Platform and Transmission Performance
443(3)
10.3.5 Remarks
446(3)
10.4 DWDM VSB Modulation-Format Optical transmission
449(12)
10.4.1 Transmission System
450(1)
10.4.2 VSB Filtering and DWDM Channels
451(3)
10.4.3 Transmission Dispersion and Compensation Fibers
454(2)
10.4.4 Transmission Performance
456(5)
10.4.4.1 Effects of Channel Spacing on Q Factor
458(1)
10.4.4.2 Effects of GVD on Q Factor
458(1)
10.4.4.3 Effects of Filter Passband on the Q Factor
459(2)
10.5 Single-Sideband Modulation
461(3)
10.5.1 Hilbert Transform SSB MZ Modulator Simulation
461(1)
10.5.2 SSB Demodulator Simulation
462(2)
10.6 Concluding Remarks
464(1)
References
465(2)
Chapter 11 OFDM Optical Transmission Systems 467(18)
11.1 Introduction
467(6)
11.1.1 Principles of oOFDM: OFDM as a Multicarrier Modulation Format
467(4)
11.1.1.1 Spectra
467(1)
11.1.1.2 Orthogonality
468(1)
11.1.1.3 Subcarriers and Pulse Shaping
469(2)
11.1.1.4 OFDM Receiver
471(1)
11.1.2 FFT- and IFFT-Based OFDM Principles
471(2)
11.2 Optical OFDM Transmission Systems
473(7)
11.2.1 Impacts of Nonlinear Modulation Effects on Optical OFDM
478(1)
11.2.2 Dispersion Tolerance
479(1)
11.2.3 Resilience to PMD Effects
479(1)
11.3 OFDM and DQPSK Formats for 100 Gbps Ethernet
480(2)
11.4 Concluding Remarks
482(1)
References
482(3)
Chapter 12 Digital Signal Processing in Optical Transmission Systems under Self-Homodyne Coherent Reception 485(54)
12.1 Introduction
485(3)
12.2 Electronic Digital Processing Equalization
488(3)
12.3 System Representation of Equalized Transfer Function
491(15)
12.3.1 Generic Equalization Formulation
491(14)
12.3.1.1 Signal Representation and Channel Pure Phase Distortion
491(2)
12.3.1.2 Equalizers at Receiver
493(9)
12.3.1.3 Equalizers at the Transmitter
502(1)
12.3.1.4 Equalization Shared between Receiver and Transmitter
503(1)
12.3.1.5 Performance of FFE and DFE
504(1)
12.3.2 Impulse and Step Responses of the Single-Mode Optical Fiber
505(1)
12.4 Electrical Linear Double-Sampling Equalizers for Duobinary Modulation Formats for Optical Transmission
506(6)
12.5 MLSE Equalizer for Optical MSK Systems
512(3)
12.5.1 Configuration of MLSE Equalizer in OFDR
512(1)
12.5.2 MLSE Equalizer with Viterbi Algorithm
513(1)
12.5.3 MLSE Equalizer with Reduced-State Template Matching
514(1)
12.6 MLSE Scheme Performance
515(11)
12.6.1 Performance of MLSE Schemes in 40 Gbps Transmission
515(1)
12.6.2 Transmission of 10 Gbps Optical MSK Signals over 1472 km SSMF Uncompensated Optical Link
516(2)
12.6.3 Performance Limits of Viterbi-MLSE Equalizers
518(4)
12.6.4 Viterbi-MLSE Equalizers for PMD Mitigation
522(4)
12.6.5 The Uncertainty and Transmission Limitation of the Equalization Process
526(1)
12.7 Nonlinear MLSE Equalizers for MSK Optical Transmission Systems
526(3)
12.7.1 Nonlinear MLSE
526(1)
12.7.2 Trellis Structure and Viterbi Algorithm
527(1)
12.7.2.1 Trellis Structure
527(1)
12.7.2.2 Viterbi Algorithm
528(1)
12.7.3 Optical Fiber as an FSM
528(1)
12.8 Uncertainties in Optical Signal Transmission
529(2)
12.8.1 Uncertainty in ASK Modulation Optical Receiver without Equalization
529(2)
12.8.2 Uncertainty in MSK Optical Receiver with Equalization
531(1)
12.9 Electronic Dispersion Compensation of Modulation Formats
531(5)
12.10 Concluding Remarks
536(1)
References
537(2)
Chapter 13 DSP-Based Coherent Optical Transmission Systems 539(34)
13.1 Introduction
539(1)
13.2 Quadrature Phase Shift Keying Systems
539(10)
13.2.1 Carrier Phase Recovery
539(1)
13.2.2 112G QPSK Coherent Transmission Systems
540(3)
13.2.3 I-Q Imbalance Estimation Results
543(1)
13.2.4 Skew Estimation
543(3)
13.2.5 Fractionally Spaced Equalization of CD and PMD
546(1)
13.2.6 Linear and Nonlinear Equalization, and Back Propagation Compensation of Linear and Nonlinear Phase Distortion
546(3)
13.3 16QAM Systems
549(3)
13.4 Terabits/Second Superchannel Transmission Systems
552(18)
13.4.1 Overview
552(1)
13.4.2 Nyquist Pulse and Spectra
552(3)
13.4.3 Superchannel System Requirements
555(2)
13.4.3.1 Transmission Distance
555(1)
13.4.3.2 CD Tolerance
555(1)
13.4.3.3 PMD Tolerance
555(1)
13.4.3.4 SOP Rotation Speed
555(1)
13.4.3.5 Modulation Format
555(1)
13.4.3.6 Spectral Efficiency
555(2)
13.4.4 System Structure
557(6)
13.4.4.1 DSP-Based Coherent Receiver
557(2)
13.4.4.2 Optical Fourier Transform-Based Structure
559(2)
13.4.4.3 Processing
561(2)
13.4.5 Timing Recovery in Nyquist QAM Channel
563(1)
13.4.6 128 Gbps 16QAM Superchannel Transmission
564(1)
13.4.7 450 Gbps 32QAM Nyquist Transmission Systems
565(2)
13.4.8 DSP-Based Heterodyne Coherent Reception Systems
567(3)
13.5 Concluding Remarks
570(1)
References
570(3)
Chapter 14 DSP Algorithms and Coherent Transmission Systems 573(58)
14.1 Introduction
573(2)
14.2 General Algorithms for Optical Communications Systems
575(19)
14.2.1 Equalization of DAC-Limited Bandwidth for Tbps Transmission
576(3)
14.2.1.1 Motivation
576(1)
14.2.1.2 Experimental Setup and Bandwidth-Limited Equalization
576(3)
14.2.2 Linear Equalization
579(11)
14.2.2.1 Basic Assumptions
580(1)
14.2.2.2 Zero-Forcing Linear Equalization
581(1)
14.2.2.3 ZF-LE for Fiber as Transmission Channel
582(1)
14.2.2.4 Feedback Transversal Filter
583(1)
14.2.2.5 Tolerance to Additive Gaussian Noises
583(2)
14.2.2.6 Equalization with Minimizing MSE in Equalized Signals
585(1)
14.2.2.7 Constant Modulus Algorithm for Blind Equalization and Carrier Phase Recovery
586(4)
14.2.3 NLE or DFE
590(4)
14.2.3.1 DD Cancellation of ISI
590(2)
14.2.3.2 Zero-Forcing Nonlinear Equalization
592(2)
14.2.3.3 Linear and Nonlinear Equalization of Factorized Channel Response
594(1)
14.2.3.4 Equalization with Minimizing MSE in Equalized Signals
594(1)
14.3 Maximum A Posteriori Technique for Phase Estimation
594(5)
14.3.1 Method
594(1)
14.3.2 Estimates
594(5)
14.4 Carrier Phase Estimation
599(12)
14.4.1 Remarks
599(1)
14.4.2 Correction of Phase Noise and Nonlinear Effects
599(1)
14.4.3 Forward Phase Estimation QPSK Optical Coherent Receivers
600(1)
14.4.4 Carrier Recovery in Polarization Division Multiplexed Receivers: A Case Study
601(10)
14.4.4.1 FO Oscillations and Q Penalties
602(1)
14.4.4.2 Algorithm and Demonstration of Carrier Phase Recovery
603(3)
14.4.4.3 Modified Gardner Phase Detector for Nyquist Coherent Optical Transmission Systems
606(5)
14.5 Systems Performance of MLSE Equalizer-MSK Optical Transmission Systems
611(13)
14.5.1 MLSE Equalizer for Optical MSK Systems
611(2)
14.5.1.1 Configuration of MLSE Equalizer in Optical Frequency Discrimination Receiver
611(1)
14.5.1.2 MLSE Equalizer with Viterbi Algorithm
612(1)
14.5.1.3 MLSE Equalizer with Reduced-State Template Matching
613(1)
14.5.2 MLSE Scheme Performance
613(11)
14.5.2.1 Performance of MLSE Schemes in 40 Gbps Transmission Systems
613(1)
14.5.2.2 Transmission of 10 Gbps Optical MSK Signals over 1472 km SSMF Uncompensated Optical Links
614(3)
14.5.2.3 Performance Limits of Viterbi-MLSE Equalizers
617(3)
14.5.2.4 Viterbi-MLSE Equalizers for PMD Mitigation
620(2)
14.5.2.5 Uncertainty and Transmission Limitation of the Equalization Process
622(2)
14.6 Adaptive Joint CR and Turbo Decoding for Nyquist Terabit Optical Transmission in the Presence of Phase Noise
624(4)
14.6.1 Motivation
624(1)
14.6.2 Terabit Experiment Setup and Algorithm Principle
625(3)
References
628(3)
Chapter 15 Optical Soliton Transmission System 631(54)
15.1 Introduction
631(1)
15.2 Fundamentals of Nonlinear Propagation Theory
632(1)
15.3 Numerical Approach
633(4)
15.3.1 Beam Propagation Method
633(1)
15.3.2 Analytical Approach-ISM
634(3)
15.3.2.1 Soliton N = 1 by Inverse Scattering
635(1)
15.3.2.2 Soliton N = 2 by Inverse Scattering
635(2)
15.4 Fundamental and Higher-Order Solitons
637(3)
15.4.1 Soliton Evolution for N = 1, 2, 3, 4, and 5
637(3)
15.4.2 Soliton Breakdown 638 Alit
15.5 Interaction of Fundamental Solitons
640(6)
15.5.1 Two Solitons' Interaction with Different Pulse Separation
640(1)
15.5.2 Two Solitons' Interaction with Different Relative Amplitude
640(2)
15.5.3 Two Solitons' Interaction under Different Relative Phases
642(2)
15.5.4 Triple Solitons' Interaction under Different Relative Phases
644(1)
15.5.5 Triple Solitons' Interaction with Different Relative Phases and r = 1.5
645(1)
15.6 Soliton Pulse Transmission Systems and ISM
646(10)
15.6.1 ISM Revisited
647(1)
15.6.1.1 Step 1: Direct Scattering
647(1)
15.6.1.2 Step 2: Evolution of the Scattering Data
647(1)
15.6.1.3 Step 3: Inverse Spectral Transform
647(1)
15.6.2 ISM Solutions for Solitons
648(3)
15.6.2.1 Step 1: Direct Scattering Problem
649(1)
15.6.2.2 Step 2: Evolution of the Scattering Data
650(1)
15.6.2.3 Step 3: Inverse Scattering Problem
650(1)
15.6.3 N-Soliton Solution (Explicit Formula)
651(2)
15.6.4 Special Case A = N
653(1)
15.6.5 N-Soliton Solution (Asymptotic Form as τ->infinity)
654(2)
15.6.6 Bound States and Multiple Eigenvalues
656(1)
15.7 Interaction between Two Solitons in an Optical Fiber
656(4)
15.7.1 Soliton Pair with Initial Identical Phases
657(1)
15.7.2 Soliton Pair with Initial Equal Amplitudes
657(1)
15.7.3 Soliton Pair with Initial Unequal Amplitudes
658(1)
15.7.4 Design Strategy
659(1)
15.8 Generation of Bound Solitons
660(22)
15.8.1 Generation of Bound Solitons in Actively Phase Modulation Mode-Locked Fiber Ring Resonators
660(14)
15.8.1.1 Introduction
660(1)
15.8.1.2 Formation of Bound States in an FM MLFL
661(1)
15.8.1.3 Experimental Setup and Results
662(5)
15.8.1.4 Simulation of Dynamics of Bound States in an FM MLFL
667(7)
15.8.2 Active Harmonic MLFL for Soliton Generation
674(11)
15.8.2.1 Experiment Setup
674(1)
15.8.2.2 Tunable Wavelength Harmonic Mode-Locked Pulses
675(2)
15.8.2.3 Measurement of the Fundamental Frequency
677(1)
15.8.2.4 Effect of the Modulation Frequency
677(1)
15.8.2.5 Effect of the Modulation Depth/Index
678(1)
15.8.2.6 Effect of Fiber Ring Length
678(3)
15.8.2.7 Effect of Pump Power
681(1)
15.9 Concluding Remarks
682(1)
References
683(2)
Chapter 16 Higher-Order Spectrum Coherent Receivers 685(38)
16.1 Bispectrum Optical Receivers and Nonlinear Photonic Preprocessing
685(8)
16.1.1 Introductory Remarks
685(1)
16.1.2 Bispectrum
686(1)
16.1.3 Bispectrum Coherent Optical Receiver
687(1)
16.1.4 Triple Correlation and Bispectra
687(2)
16.1.4.1 Definition
687(1)
16.1.4.2 Gaussian Noise Rejection
688(1)
16.1.4.3 Encoding of Phase Information
688(1)
16.1.4.4 Eliminating Gaussian Noise
688(1)
16.1.5 Transmission and Detection
689(4)
16.1.5.1 Optical Transmission Route and Simulation Platform
689(1)
16.1.5.2 FWM and Bispectrum Receiving
689(1)
16.1.5.3 Performance
689(4)
16.2 Nonlinear Photonic Signal Processing Using Higher-Order Spectra
693(9)
16.2.1 Introductory Remarks
693(1)
16.2.2 FWM and Photonic Processing for Higher-Order Spectra
693(3)
16.2.2.1 Bispectral Optical Structures
693(1)
16.2.2.2 Phenomena of FWM
694(2)
16.2.3 Third-Order Nonlinearity and Parametric FWM Process
696(3)
16.2.3.1 Nonlinear Wave Equation
696(1)
16.2.3.2 FWM Coupled-Wave Equations
697(1)
16.2.3.3 Phase Matching
698(1)
16.2.3.4 Coupled Equations and Conversion Efficiency
699(1)
16.2.4 Optical Domain Implementation
699(2)
16.2.4.1 Nonlinear Wave Guide
699(1)
16.2.4.2 Third Harmonic Conversion
700(1)
16.2.4.3 Conservation of Momentum
700(1)
16.2.4.4 Estimate of Optical Power Required for FWM
700(1)
16.2.5 Transmission Models and Nonlinear Guided Wave Devices
701(1)
16.3 System Applications of Third-Order Parametric Nonlinearity in Optical Signal Processing
702(19)
16.3.1 Parametric Amplifiers
702(13)
16.3.1.1 Wavelength Conversion and Nonlinear Phase Conjugation
704(3)
16.3.1.2 High-Speed Optical Switching
707(4)
16.3.1.3 Triple Correlation
711(4)
16.3.1.4 Remarks
715(1)
16.3.2 Nonlinear Photonic Preprocessing in Coherent Reception Systems
715(6)
16.4 Concluding Remarks
721(1)
References
722(1)
Chapter 17 Temporal Lens and Adaptive Electronic/Photonic Equalization 723(48)
17.1 Introduction
723(2)
17.2 Space Time Duality and Equalization
725(10)
17.2.1 Space Time Duality
726(6)
17.2.1.1 Paraxial Diffraction
726(1)
17.2.1.2 Governing Nonlinear Schrodinger Equation
726(1)
17.2.1.3 Diffractive and Dispersive Phases
727(1)
17.2.1.4 Spatial Lens
728(1)
17.2.1.5 Time Lens
728(1)
17.2.1.6 Temporal Imaging
729(2)
17.2.1.7 Electro-Optic Phase Modulator as a Time Lens
731(1)
17.2.2 Equalization in Transmission System
732(3)
17.2.2.1 Equalization with Sinusoidal Driven Voltage Phase Modulator
732(2)
17.2.2.2 Equalization with Parabolic Driven Voltage Phase Modulator
734(1)
17.3 Simulation of Transmission and Equalization
735(10)
17.3.1 Single-Pulse Transmission
735(4)
17.3.1.1 Equalization of Second-Order Dispersion
735(3)
17.3.1.2 Equalization of TOD
738(1)
17.3.2 Pulse Train Transmission
739(4)
17.3.2.1 Second-Order Dispersion
739(3)
17.3.2.2 Equalization of TOD
742(1)
17.3.3 Equalization of Timing Jitter and PMD
743(2)
17.4 Equalization in 160 Gbps Transmission System
745(22)
17.4.1 System Overview
745(1)
17.4.1.1 System Configurations
745(1)
17.4.1.2 Experimental Setup
745(1)
17.4.2 Simulation Model Overview
746(8)
17.4.2.1 System Overview
746(2)
17.4.2.2 Transmitter Block
748(1)
17.4.2.3 Transmission Link
749(1)
17.4.2.4 Demultiplexer
749(2)
17.4.2.5 Equalizer System
751(2)
17.4.2.6 Errors Calculation
753(1)
17.4.3 Simulation Results
754(17)
17.4.3.1 Single-Pulse Transmission
754(5)
17.4.3.2 160 Gbps Transmission and Equalization
759(8)
17.5 Concluding Remarks
767(1)
References
767(4)
Chapter 18 Comparison of Modulation Formats for Digital Optical Communications 771(52)
18.1 Identification of Modulation Features for Combating Impairment Effects
771(2)
18.1.1 Binary Digital Optical Signals
771(1)
18.1.2 M-ary Digital Optical Signals
772(1)
18.1.3 Multi-Subcarrier Digital Optical Signals
772(1)
18.1.4 Modulation Formats and Electronic Equalization
772(1)
18.2 Amplitude, Phase, and Frequency Modulation Formats in Dispersion-Compensating Span Transmission Systems
773(4)
18.2.1 ASK-DPSK and DPSK-DQPSK under Self-Homodyne Reception
773(1)
18.2.1.1 Dispersion Sensitivity of Different Modulation Formats of ASK and DPSK
773(1)
18.2.2 NRZ-ASK and NRZ-DPSK under Self-Homodyne Reception
773(2)
18.2.3 RZ-ASK and RZ-DPSK under Self-Homodyne Reception
775(1)
18.2.4 CSRZ-ASK and CSRZ-DPSK under Self-Homodyne Reception
776(1)
18.2.5 ASK and DPSK Spectra
777(1)
18.2.6 ASK and DPSK under Self-Homodyne Reception in Long-Haul Transmission
777(1)
18.3 Nonlinear Effects in ASK and DPSK under Self-Homodyne Reception in Long-Haul Transmission
777(7)
18.3.1 Performance of DWDM RZ-DPSK and CSRZ-DPSK
779(1)
18.3.2 Nonlinear Effects on CSRZ-DPSK and RZ-DPSK
779(1)
18.3.3 Nonlinear Effects on CSRZ-ASK and RZ-ASK
780(1)
18.3.4 Continuous Phase versus Discrete Phase Shift Keying under Self-Homodyne Reception
780(1)
18.3.5 Multi-Subcarrier versus Single/Dual Carrier Modulation under Self-Homodyne Reception
781(1)
18.3.6 Multilevel versus Binary or I-Q Modulation under Self-Homodyne Reception
782(1)
18.3.7 Single-Sideband and Partial Response Modulation under Self-Homodyne Reception
783(1)
18.4 100 G and Tbps Homodyne Reception Transmission Systems
784(31)
18.4.1 Generation of Multi-Subcarriers
784(1)
18.4.2 Nyquist Signal Generation Using DAC by Equalization in Frequency Domain
784(4)
18.4.3 Function Modules of a Nyquist-WDM System
788(2)
18.4.4 DSP Architecture
790(1)
18.4.5 Key Hardware Subsystems
790(5)
18.4.5.1 Recirculating Frequency Shifting
790(2)
18.4.5.2 Nonlinear Excitation Comb Generation and Multiplexed Laser Sources
792(1)
18.4.5.3 Experimental Platform for Comb Generators
792(3)
18.4.6 Non-DCF 1 Tbps and 2 Tbps Superchannel Transmission Performance
795(19)
18.4.6.1 Transmission Platform
795(1)
18.4.6.2 Performance
796(11)
18.4.6.3 Coding Gain of FEC and Transmission Simulation
807(1)
18.4.6.4 MIMO Filtering Process to Extend Transmission Reach
808(6)
18.4.7 Multicarrier Scheme Comparison
814(1)
18.5 Modulation Formats and All-Optical Networking
815(3)
18.5.1 Advanced Modulation Formats in Long-Haul Transmission Systems
815(1)
18.5.2 Advanced Modulation Formats in All-Optical Networks
815(3)
18.5.3 Hybrid 40 Gbps over 10 Gbps Optical Networks: 328 km SSMF + DCF for 320 km Tx-Impact of Adjacent 10 G/40 G Channels
818(1)
18.6 Ultra-Fast Optical Networks
818(2)
18.7 Concluding Remarks
820(1)
References
821(2)
Annex 1: Technical Data of Single-Mode Optical Fibers 823(10)
Annex 2: Coherent Balanced Receiver and Method for Noise Suppression 833(18)
Annex 3: RMS Definition and Power Measurement 851(4)
Annex 4: Power Budget 855(6)
Annex 5: Modeling of Digital Photonic Transmission Systems 861(32)
Index 893
Le Nguyen Binh is technical director of Huawei Technologies European Research Center, Munich, Germany. He holds a BE (Hons) and Ph.D from the University of Western Australia, Crawley. He has authored and co-authored more than 300 journal papers and eight books, in addition to several refereeing conferences. Previously, he was professorial fellow at Nanyang Technological University of Singapore; the Christian Albrechts University of Kiel, Germany; and several Australian universities. He also served as Chair of Commission D (Electronics and Photonics) of the National Committee for Radio Sciences of the Australian Academy of Sciences (19952005).