Muutke küpsiste eelistusi

E-raamat: Advanced Digital Signal Processing of Seismic Data

(King Fahd University of Petroleum and Minerals, Saudi Arabia)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Jan-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108579216
  • Formaat - EPUB+DRM
  • Hind: 137,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Jan-2020
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108579216

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Seismic data must be interpreted using digital signal processing techniques in order to create accurate representations of petroleum reservoirs and the interior structure of the Earth. This book provides an advanced overview of digital signal processing (DSP) and its applications to exploration seismology using real-world examples. The book begins by introducing seismic theory, describing how to identify seismic events in terms of signals and noise, and how to convert seismic data into the language of DSP. Deterministic DSP is then covered, together with non-conventional sampling techniques. The final part covers statistical seismic signal processing via Wiener optimum filtering, deconvolution, linear-prediction filtering and seismic wavelet processing. With over sixty end-of-chapter exercises, seismic data sets and data processing MATLAB codes included, this is an ideal resource for electrical engineering students unfamiliar with seismic data, and for Earth Scientists and petroleum professionals interested in DSP techniques.

Arvustused

'This textbook represents an excellent introduction to the advanced study of subterranean reservoir analysis based on the method of seismic reflection a very readable and informative account Anyone working in the field of seismic reflection surveying or related studies involving geophysical exploration will likely benefit from reading this book.' M. S. Field, Choice 'The book content is well organized, and the text is generously illustrated with many quality diagrams, figures, tables, and images. Many useful worked examples with solutions appear in the book, which readily enforce the background theory. They are supplemented with more than 60 excellent end-of-chapter exercises and MATLAB computer assignments, which test the reader's knowledge and understanding. The book is also supplemented at the end with a comprehensive reference list. In summary, this book provides an excellent resource for explaining seismic data processing to electrical engineering students and DSP algorithms to geoscientists.' William A. Sandham, Scotsig, UK

Muu info

Presents an advanced overview of Digital Signal Processing and its applications to exploration seismology, for electrical engineers, geophysicists and petroleum professionals.
Preface xi
Part I Seismic Theory Background
1(114)
1 Introduction
3(39)
1.1 Introduction
3(2)
1.2 Oil and Gas Formation and Accumulation
5(1)
1.3 Geological Classification of Petroleum Reservoirs
5(3)
1.4 Oil and Gas: From Exploration to Production
8(2)
1.5 Geophysical Surveys
10(2)
1.6 The Seismic Surveying Method
12(2)
1.7 Seismic Data Acquisition
14(15)
1.8 Seismic Data Processing
29(10)
1.9 Seismic Data Interpretation
39(1)
1.10 Summary
40(1)
Exercises
40(2)
2 Seismic Theory and Reflection Surveying: A Necessary Background
42(73)
2.1 Introduction
42(1)
2.2 Theory of Elasticity
43(5)
2.2.1 Stress
43(1)
2.2.2 Strain
44(4)
2.3 The Wave Equation and d'Alembert's Solution
48(10)
2.4 Seismic Waves
58(6)
2.4.1 Body Waves
60(3)
2.4.2 Surface Waves
63(1)
2.5 Seismic Wavefronts and Raypaths
64(1)
2.6 Seismic Wave Velocity of Rocks
65(2)
2.7 Propagation Effects on Seismic Waves Amplitudes
67(6)
2.7.1 Amplitude Attenuation
67(3)
2.7.2 Dispersion
70(3)
2.8 Raypaths in Layered Media
73(9)
2.8.1 Reflection and Transmission of Normally Incident Seismic Wave Rays
73(5)
2.8.2 Reflection and Refraction of Obliquely Incident Rays
78(2)
2.8.3 Critical Refraction
80(2)
2.8.4 The Phenomena of Diffraction
82(1)
2.9 Seismic Events Geometry in Layered Media
82(15)
2.9.1 Geometry of Direct Raypaths
83(1)
2.9.2 Single Layer Reflector
83(6)
2.9.3 Single Layer Refractions
89(1)
2.9.4 Single Layer Dipping Reflectors
89(3)
2.9.5 Geometry of Diffractions
92(1)
2.9.6 Sequences of Horizontal Reflectors
92(5)
2.10 Characteristics of Seismic Events and Accompanying Noise
97(10)
2.10.1 Linear Events
98(3)
2.10.2 Hyperbolic Events
101(2)
2.10.3 Noise
103(4)
2.10.4 Examples of Real Seismic Data
107(1)
2.11 Summary
107(4)
Exercises
111(4)
Part II Deterministic Digital Signal Processing for Seismic Data
115(156)
3 Spectral Analysis of Seismic Data and Useful Transforms
117(76)
3.1 Introduction
117(1)
3.2 Discrete-Time(Space) Signals and Systems: A Review
117(15)
3.2.1 Discrete-Time(Space) Signals
117(5)
3.2.2 Discrete-Time(Space) Systems
122(10)
3.3 The z-Transform
132(18)
3.3.1 The Forward z-Transform
132(7)
3.3.2 Rational z-Transforms
139(3)
3.3.3 The Inverse z-Transform
142(6)
3.3.4 Analysis of LSI Systems in the z-Domain
148(2)
3.4 The Fourier Transform
150(13)
3.4.1 The Discrete Fourier Transform
155(8)
3.5 Spectral Analysis of 2-D Seismic Data
163(9)
3.6 Radon Transform
172(14)
3.6.1 Radon Transform and Seismic Data Processing
177(1)
3.6.2 Linear Radon Transform
178(4)
3.6.3 Parabolic Radon Transform
182(4)
3.7 Summary
186(3)
Exercises
189(4)
4 Sampling Theorem for Seismic Data
193(28)
4.1 Introduction
193(1)
4.2 Sampling Theorem for Time and Spatial Continuous Functions
194(12)
4.2.1 1-D Sampling
194(4)
4.2.2 2-D Sampling
198(4)
4.2.3 Alias Effects on Seismic Data
202(4)
4.3 Overview of Compressive Sensing Applications in Seismic Data Processing
206(13)
4.3.1 Properties of Compressive Sensing
209(1)
4.3.2 Mathematical Theory
209(2)
4.3.3 Missing Seismic Trace Interpolation
211(3)
4.3.4 Primary Arrivals and Multiples Separation
214(5)
4.4 Summary
219(1)
Exercises
219(2)
5 Seismic Applications of Digital Filtering Theory
221(50)
5.1 Introduction
221(1)
5.2 Filter Design
222(3)
5.3 Design of FIR Digital Filters
225(23)
5.3.1 Design of FIR Digital Filter Based on Windowing Techniques
226(9)
5.3.2 Design of FIR Filters Using Frequency Sampling
235(3)
5.3.3 FIR Projections onto Convex Sets Based Digital Filters
238(10)
5.4 Design of IIR Digital Filters
248(7)
5.5 Seismic Wavefield Extrapolation 1-D FIR and IIR Filters
255(6)
5.6 Two-dimensional Filters for Seismic Data
261(8)
5.7 Summary
269(1)
Exercises
269(2)
Part III Statistical Digital Signal Processing for Seismic Data
271(42)
6 Fundamentals of Digital Optimal Filtering
273(12)
6.1 Introduction
273(1)
6.2 The Wiener Optimum Filter
274(5)
6.3 Application of Optimum Filters to Reflection Seismology
279(5)
6.4 Summary
284(1)
Exercises
284(1)
7 Seismic Deconvolution
285(13)
7.1 Introduction
285(1)
7.2 The Seismic Deconvolution Model
286(3)
7.3 Seismic Deconvolution Based on Wiener Optimum Filtering
289(6)
7.3.1 Spiking Deconvolution
289(1)
7.3.2 The Linear Prediction Filter
290(5)
7.4 FX Deconvolution
295(1)
7.5 Summary
295(1)
Exercises
296(2)
8 Seismic Wavelet Processing
298(15)
8.1 Introduction
298(1)
8.2 Seismic Wavelets
299(10)
8.2.1 Two-Length Wavelets or Minimum-Delay Wavelets
301(5)
8.2.2 Zero-Phase and Symmetric Wavelets
306(3)
8.3 Seismic Wavelet Processing
309(1)
8.4 Summary
309(1)
Exercises
310(3)
References 313(10)
Index 323
Wail A. Mousa is Associate Professor of Electrical Engineering at King Fahd University of Petroleum and Minerals, Sausi Arabia (KFUPM). His research interests include digital signal processing and its application in geophysics, with emphasis on seismic data processing. He has taught courses on 'Geo-signal data processing' to graduate and undergraduate students in electrical engineering since 2007; and previously worked as a research scientist for Schlumberger. He was also Chair of the World Petroleum Council-Youth Committee (WPC-YC) for three years.