Preface |
|
xvii | |
Authors |
|
xix | |
|
|
1 | (10) |
|
1.1 Importance of Interaction |
|
|
2 | (1) |
|
1.2 Importance of Material Behavior |
|
|
3 | (3) |
|
1.2.1 Linear Elastic Behavior |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.2.3 Continuous Yield Behavior |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.5 Discontinuous Behavior |
|
|
4 | (1) |
|
1.2.6 Material Parameters |
|
|
5 | (1) |
|
1.3 Ranges of Applicability of Models |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (4) |
|
|
8 | (3) |
|
Chapter 2 Beam-Columns, Piles, and Walls: One-Dimensional Simulation |
|
|
11 | (128) |
|
|
11 | (1) |
|
2.2 Beams with Spring Soil Model |
|
|
11 | (4) |
|
2.2.1 Governing Equations for Beams with Winkler Model |
|
|
11 | (2) |
|
2.2.2 Governing Equations for Flexible Beams |
|
|
13 | (1) |
|
|
14 | (1) |
|
2.3 Laterally Loaded (One-Dimensional) Pile |
|
|
15 | (10) |
|
2.3.1 Coefficients A, B, C, D: Based on Boundary Conditions |
|
|
15 | (1) |
|
2.3.2 Pile of Infinite Length |
|
|
16 | (1) |
|
2.3.3 Lateral Load at Top |
|
|
16 | (3) |
|
|
19 | (1) |
|
2.3.5 Pile Fixed against Rotation at Top |
|
|
20 | (2) |
|
2.3.6 Example 2.1: Analytical Solution for Load at Top of Pile with Overhang |
|
|
22 | (3) |
|
2.3.7 Example 2.2: Long Pile Loaded at Top with No Rotation |
|
|
25 | (1) |
|
|
25 | (15) |
|
2.4.1 Finite Difference Method |
|
|
26 | (1) |
|
2.4.1.1 First-Order Derivative: Central Difference |
|
|
26 | (1) |
|
2.4.1.2 Second Derivative |
|
|
27 | (1) |
|
2.4.1.3 Boundary Conditions |
|
|
27 | (8) |
|
2.4.2 Example 2.3: Finite Difference Method: Long Pile Restrained against Rotation at Top |
|
|
35 | (5) |
|
2.5 Finite Element Method: One-Dimensional Simulation |
|
|
40 | (7) |
|
2.5.1 One-Dimensional Finite Element Method |
|
|
40 | (2) |
|
2.5.2 Details of Finite Element Method |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (3) |
|
2.5.3 Boundary Conditions |
|
|
46 | (1) |
|
|
47 | (1) |
|
2.6 Soil Behavior: Resistance--Displacement (py--v or p--y) Representation |
|
|
47 | (13) |
|
2.6.1 One-Dimensional Response |
|
|
48 | (1) |
|
2.6.2 py--ν (p--y) Representation and Curves |
|
|
48 | (2) |
|
2.6.3 Simulation of py--ν Curves |
|
|
50 | (1) |
|
2.6.4 Determination of py--ν (p--y) Curves |
|
|
51 | (1) |
|
2.6.4.1 Ultimate Soil Resistance |
|
|
52 | (1) |
|
2.6.4.2 Ultimate Soil Resistance for Clays |
|
|
52 | (3) |
|
2.6.4.3 py--ν Curves for Yielding Behavior |
|
|
55 | (1) |
|
2.6.4.4 py--ν Curves for Stiff Clay |
|
|
56 | (1) |
|
2.6.4.5 py--ν Curves for Sands |
|
|
57 | (2) |
|
2.6.5 py--ν Curves for Cyclic Behavior |
|
|
59 | (1) |
|
2.6.6 Ramberg-Osgood Model (R--O) for Representation of py--ν Curves |
|
|
60 | (1) |
|
2.7 One-Dimensional Simulation of Retaining Structures |
|
|
60 | (4) |
|
2.7.1 Calculations for Soil Modulus, Es |
|
|
62 | (1) |
|
|
62 | (1) |
|
2.7.2 Nonlinear Soil Response |
|
|
62 | (1) |
|
2.7.2.1 Ultimate Soil Resistance |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (6) |
|
2.8.1 Boundary Conditions |
|
|
66 | (1) |
|
|
67 | (1) |
|
2.8.3 Soil Resistance Curves at Tip |
|
|
68 | (1) |
|
2.8.4 Finite Difference Method for Axially Loaded Piles |
|
|
68 | (1) |
|
2.8.5 Nonlinear Axial Response |
|
|
69 | (1) |
|
2.8.6 Procedure for Developing τs--u (t--z) Curves |
|
|
69 | (1) |
|
2.8.6.1 Steps for Construction of τs--u (t--z) Curves |
|
|
69 | (1) |
|
2.9 Torsional Load on Piles |
|
|
70 | (4) |
|
2.9.1 Finite Difference Method for Torsionally Loaded Pile |
|
|
72 | (1) |
|
2.9.2 Finite Element Method for Torsionally Loaded Pile |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (65) |
|
2.10.1 Example 2.4: py--ν Curves for Normally Consolidated Clay |
|
|
74 | (7) |
|
2.10.2 Example 2.5: Laterally Loaded Pile in Stiff Clay |
|
|
81 | (2) |
|
2.10.2.1 Development of py--ν Curves |
|
|
83 | (5) |
|
2.10.3 Example 2.6: py--ν Curves for Cohesionless Soil |
|
|
88 | (4) |
|
2.10.4 Simulation of py--ν Curve by Using Ramberg--Osgood Model |
|
|
92 | (3) |
|
2.10.5 Example 2.7: Axially Loaded Pile: τs--u (t--z), qp--up Curves |
|
|
95 | (1) |
|
|
95 | (6) |
|
|
101 | (1) |
|
2.10.5.3 Back Prediction for τs--u Curve |
|
|
102 | (1) |
|
|
102 | (2) |
|
2.10.6 Example 2.8: Laterally Loaded Pile---A Field Problem |
|
|
104 | (1) |
|
|
104 | (1) |
|
2.10.6.2 Incremental Nonlinear Analysis |
|
|
105 | (1) |
|
2.10.7 Example 2.9: One-Dimensional Simulation of Three-Dimensional Loading on Piles |
|
|
106 | (2) |
|
2.10.8 Example 2.10: Tie-Back Sheet Pile Wall by One-Dimensional Simulation |
|
|
108 | (2) |
|
2.10.9 Example 2.11: Hyperbolic Simulation for py--ν Curves |
|
|
110 | (5) |
|
2.10.10 Example 2.12: py--ν Curves from 3-D Finite Element Model |
|
|
115 | (2) |
|
2.10.10.1 Construction of py--ν Curves |
|
|
117 | (3) |
|
|
120 | (14) |
|
|
134 | (5) |
|
Chapter 3 Two- and Three-Dimensional Finite Element Static Formulations and Two-Dimensional Applications |
|
|
139 | (104) |
|
|
139 | (1) |
|
3.2 Finite Element Formulations |
|
|
139 | (9) |
|
|
144 | (2) |
|
3.2.2 Numerical Integration |
|
|
146 | (1) |
|
3.2.3 Assemblage or Global Equation |
|
|
146 | (2) |
|
3.2.4 Solution of Global Equations |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
3.4 Sequential Construction |
|
|
149 | (7) |
|
|
151 | (1) |
|
|
152 | (1) |
|
3.4.2.1 Simulation of Embankment |
|
|
152 | (2) |
|
|
154 | (1) |
|
3.4.3.1 Installation of Support Systems |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (87) |
|
3.5.1 Example 3.1: Footings on Clay |
|
|
156 | (4) |
|
3.5.2 Example 3.2: Footing on Sand |
|
|
160 | (4) |
|
3.5.3 Example 3.3: Finite Element Analysis of Axially Loaded Piles |
|
|
164 | (1) |
|
3.5.3.1 Finite Element Analysis |
|
|
165 | (2) |
|
|
167 | (6) |
|
3.5.4 Example 3.4: Two-Dimensional Analysis of Piles Using Hrennikoff Method |
|
|
173 | (4) |
|
3.5.5 Example 3.5: Model Retaining Wall---Active Earth Pressure |
|
|
177 | (2) |
|
3.5.5.1 Finite Element Analysis |
|
|
179 | (1) |
|
|
180 | (1) |
|
3.5.6 Example 3.6: Gravity Retaining Wall |
|
|
181 | (2) |
|
3.5.6.1 Interface Behavior |
|
|
183 | (1) |
|
3.5.6.2 Earth Pressure System |
|
|
183 | (1) |
|
3.5.7 Example 3.7: U-Frame, Port Allen Lock |
|
|
184 | (2) |
|
3.5.7.1 Finite Element Analysis |
|
|
186 | (3) |
|
3.5.7.2 Material Modeling |
|
|
189 | (1) |
|
|
189 | (1) |
|
3.5.8 Example 3.8: Columbia Lock and Pile Foundations |
|
|
189 | (2) |
|
3.5.8.1 Constitutive Models |
|
|
191 | (6) |
|
3.5.8.2 Two-Dimensional Approximation |
|
|
197 | (5) |
|
3.5.9 Example 3.9: Underground Works: Powerhouse Cavern |
|
|
202 | (3) |
|
|
205 | (1) |
|
3.5.9.2 DSC Modeling of Rocks |
|
|
206 | (1) |
|
3.5.9.3 Hydropower Project |
|
|
206 | (9) |
|
3.5.10 Example 3.10: Analysis of Creeping Slopes |
|
|
215 | (4) |
|
3.5.11 Example 3.11: Twin Tunnel Interaction |
|
|
219 | (6) |
|
3.5.12 Example 3.12: Field Behavior of Reinforced Earth Retaining Wall |
|
|
225 | (1) |
|
3.5.12.1 Description of Wall |
|
|
225 | (2) |
|
3.5.12.2 Numerical Modeling |
|
|
227 | (1) |
|
3.5.12.3 Construction Simulation |
|
|
228 | (1) |
|
3.5.12.4 Constitutive Models |
|
|
228 | (2) |
|
3.5.12.5 Testing and Parameters |
|
|
230 | (1) |
|
3.5.12.6 Predictions of Field Measurements |
|
|
230 | (5) |
|
|
235 | (2) |
|
|
237 | (6) |
|
Chapter 4 Three-Dimensional Applications |
|
|
243 | (80) |
|
|
243 | (1) |
|
4.2 Multicomponent Procedure |
|
|
244 | (9) |
|
4.2.1 Pile as Beam-Column |
|
|
245 | (2) |
|
4.2.2 Pile Cap as Plate Bending |
|
|
247 | (1) |
|
4.2.2.1 In-Plane Response |
|
|
247 | (2) |
|
4.2.2.2 Lateral (Downward) Loading on Cap-Bending Response |
|
|
249 | (2) |
|
4.2.3 Assemblage or Global Equations |
|
|
251 | (1) |
|
|
251 | (1) |
|
4.2.5 Representation of Soil |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (70) |
|
4.3.1 Example 4.1: Deep Beam |
|
|
253 | (1) |
|
4.3.2 Example 4.2: Slab on Elastic Foundation |
|
|
254 | (3) |
|
4.3.3 Example 4.3: Raft Foundation |
|
|
257 | (1) |
|
4.3.4 Example 4.4: Mat Foundation and Frame System |
|
|
258 | (3) |
|
4.3.5 Example 4.5: Three-Dimensional Analysis of Pile Groups: Extended Hrennikoff Method |
|
|
261 | (7) |
|
4.3.6 Example 4.6: Model Cap-Pile Group-Soil Problem: Approximate 3-D Analysis |
|
|
268 | (4) |
|
|
272 | (1) |
|
4.3.7 Example 4.7: Model Cap-Pile Group-Soil Problem---Full 3-D Analysis |
|
|
273 | (1) |
|
4.3.7.1 Properties of Materials |
|
|
273 | (2) |
|
4.3.7.2 Interface Element |
|
|
275 | (1) |
|
4.3.8 Example 4.8: Laterally Loaded Piles---3-D Analysis |
|
|
276 | (1) |
|
4.3.8.1 Finite Element Analysis |
|
|
277 | (3) |
|
|
280 | (1) |
|
4.3.9 Example 4.9: Anchor-Soil System |
|
|
280 | (1) |
|
4.3.9.1 Constitutive Models for Sand and Interfaces |
|
|
281 | (2) |
|
4.3.10 Example 4.10: Three-Dimensional Analysis of Pavements: Cracking and Failure |
|
|
283 | (6) |
|
4.3.11 Example 4.11: Analysis for Railroad Track Support Structures |
|
|
289 | (1) |
|
4.3.11.1 Nonlinear Analyses |
|
|
289 | (4) |
|
4.3.12 Example 4.12: Analysis of Buried Pipeline with Elbows |
|
|
293 | (4) |
|
4.3.13 Example 4.13: Laterally Loaded Tool (Pile) in Soil with Material and Geometric Nonlinearities |
|
|
297 | (5) |
|
4.3.13.1 Constitutive Laws |
|
|
302 | (2) |
|
|
304 | (3) |
|
4.3.14 Example 4.14: Three-Dimensional Slope |
|
|
307 | (2) |
|
|
309 | (1) |
|
|
310 | (7) |
|
|
317 | (6) |
|
Chapter 5 Flow through Porous Media: Seepage |
|
|
323 | (86) |
|
|
323 | (1) |
|
5.2 Governing Differential Equation |
|
|
323 | (3) |
|
5.2.1 Boundary Conditions |
|
|
324 | (2) |
|
|
326 | (12) |
|
5.3.1 Finite Difference Method |
|
|
327 | (1) |
|
5.3.1.1 Steady-State Confined Seepage |
|
|
327 | (2) |
|
5.3.1.2 Time-Dependent Free Surface Flow Problem |
|
|
329 | (1) |
|
5.3.1.3 Implicit Procedure |
|
|
330 | (1) |
|
5.3.1.4 Alternating Direction Explicit Procedure (ADEP) |
|
|
330 | (6) |
|
5.3.2 Example 5.1: Transient Free Surface in River Banks |
|
|
336 | (2) |
|
5.4 Finite Element Method |
|
|
338 | (19) |
|
5.4.1 Confined Steady-State Seepage |
|
|
339 | (1) |
|
5.4.1.1 Velocities and Quantity of Flow |
|
|
340 | (1) |
|
5.4.2 Example 5.2: Steady Confined Seepage in Foundation of Dam |
|
|
341 | (3) |
|
5.4.2.1 Hydraulic Gradients |
|
|
344 | (1) |
|
5.4.3 Steady Unconfined or Free Surface Seepage |
|
|
345 | (1) |
|
5.4.3.1 Variable Mesh Method |
|
|
346 | (3) |
|
5.4.4 Unsteady or Transient Free Surface Seepage |
|
|
349 | (1) |
|
5.4.5 Example 5.3: Steady Free Surface Seepage in Homogeneous Dam by VM Method |
|
|
350 | (1) |
|
5.4.6 Example 5.4: Steady Free Surface Seepage in Zoned Dam by VM Method |
|
|
351 | (1) |
|
5.4.7 Example 5.5: Steady Free Surface Seepage in Dam with Core and Shell by VM Method |
|
|
351 | (2) |
|
5.4.8 Example 5.6: Steady Confined/Unconfined Seepage through Cofferdam and Berm |
|
|
353 | (4) |
|
5.4.8.1 Initial Free Surface |
|
|
357 | (1) |
|
5.5 Invariant Mesh or Fixed Domain Methods |
|
|
357 | (10) |
|
5.5.1 Residual Flow Procedure |
|
|
358 | (2) |
|
5.5.1.1 Finite Element Method |
|
|
360 | (2) |
|
|
362 | (1) |
|
5.5.1.3 Assemblage Global Equations |
|
|
363 | (1) |
|
5.5.1.4 Residual Flow Procedure |
|
|
363 | (2) |
|
5.5.1.5 Surface of Seepage |
|
|
365 | (1) |
|
|
365 | (2) |
|
5.6 Applications: Invariant Mesh Using RFP |
|
|
367 | (42) |
|
5.6.1 Example 5.7: Steady Free Surface in Zoned Dam |
|
|
367 | (1) |
|
5.6.2 Example 5.8: Transient Seepage in River Banks |
|
|
367 | (2) |
|
5.6.3 Example 5.9: Comparisons between RFP and VI Methods |
|
|
369 | (1) |
|
5.6.4 Example 5.10: Three-Dimensional Seepage |
|
|
370 | (3) |
|
5.6.5 Example 5.11: Combined Stress, Seepage, and Stability Analysis |
|
|
373 | (10) |
|
5.6.6 Example 5.12: Field Analysis of Seepage in River Banks |
|
|
383 | (2) |
|
5.6.7 Example 5.13: Transient Three-Dimensional Flow |
|
|
385 | (5) |
|
5.6.8 Example 5.14: Three-Dimensional Flow under Rapid Drawdown |
|
|
390 | (2) |
|
5.6.9 Example 5.15: Saturated-Unsaturated Seepage |
|
|
392 | (5) |
|
|
397 | (1) |
|
|
398 | (1) |
|
One-Dimensional Unconfined Seepage |
|
|
398 | (1) |
|
|
398 | (7) |
|
|
405 | (4) |
|
Chapter 6 Flow through Porous Deformable Media: One-Dimensional Consolidation |
|
|
409 | (42) |
|
|
409 | (1) |
|
6.2 One-Dimensional Consolidation |
|
|
409 | (5) |
|
6.2.1 Review of One-Dimensional Consolidation |
|
|
409 | (1) |
|
6.2.2 Governing Differential Equations |
|
|
410 | (1) |
|
6.2.2.1 Boundary Conditions |
|
|
411 | (1) |
|
6.2.3 Stress--Strain Behavior |
|
|
412 | (1) |
|
6.2.3.1 Boundary Conditions |
|
|
413 | (1) |
|
6.3 Nonlinear Stress-Strain Behavior |
|
|
414 | (4) |
|
6.3.1 Procedure 1: Nonlinear Analysis |
|
|
414 | (2) |
|
6.3.2 Procedure 2: Nonlinear Analysis |
|
|
416 | (1) |
|
|
416 | (1) |
|
6.3.3 Alternative Consolidation Equation |
|
|
416 | (1) |
|
6.3.3.1 Pervious Boundary |
|
|
417 | (1) |
|
6.3.3.2 Impervious Boundary at 2H |
|
|
417 | (1) |
|
|
418 | (8) |
|
6.4.1 Finite Difference Method |
|
|
418 | (1) |
|
6.4.1.1 FD Scheme No. 1: Simple Explicit |
|
|
418 | (1) |
|
6.4.1.2 FD Scheme No. 2: Implicit, Crank--Nicholson Scheme |
|
|
419 | (1) |
|
6.4.1.3 FD Scheme No. 3: Another Implicit Scheme |
|
|
419 | (1) |
|
6.4.1.4 FD Scheme No. 4A: Special Explicit Scheme |
|
|
419 | (1) |
|
6.4.1.5 FD Scheme No. 4B: Special Explicit |
|
|
420 | (1) |
|
6.4.2 Finite Element Method |
|
|
420 | (3) |
|
|
423 | (2) |
|
6.4.2.2 Assemblage Equations |
|
|
425 | (1) |
|
6.4.2.3 Boundary Conditions or Constraints |
|
|
425 | (1) |
|
|
426 | (1) |
|
6.4.2.5 Material Parameters |
|
|
426 | (1) |
|
|
426 | (25) |
|
6.5.1 Example 6.1: Layered Soil---Numerical Solutions by Various Schemes |
|
|
426 | (2) |
|
6.5.2 Example 6.2: Two-Layered System |
|
|
428 | (1) |
|
6.5.3 Example 6.3: Test Embankment on Soft Clay |
|
|
429 | (3) |
|
6.5.4 Example 6.4: Consolidation for Layer Thickness Increases with Time |
|
|
432 | (1) |
|
6.5.5 Example 6.5: Nonlinear Analysis |
|
|
432 | (4) |
|
6.5.6 Example 6.6: Strain-Based Analysis of Consolidation in Layered Clay |
|
|
436 | (6) |
|
6.5.6.1 Numerical Example |
|
|
442 | (1) |
|
6.5.7 Example 6.7: Comparison of Uncoupled and Coupled Solutions |
|
|
442 | (1) |
|
6.5.7.1 Uncoupled Solution |
|
|
443 | (2) |
|
|
445 | (1) |
|
6.5.7.3 Numerical Example |
|
|
446 | (2) |
|
|
448 | (3) |
|
Chapter 7 Coupled Flow through Porous Media: Dynamics and Consolidation |
|
|
451 | (106) |
|
|
451 | (1) |
|
7.2 Governing Differential Equations |
|
|
451 | (5) |
|
|
451 | (3) |
|
|
454 | (1) |
|
7.2.2.1 Volumetric Behavior |
|
|
455 | (1) |
|
7.3 Dynamic Equations of Equilibrium |
|
|
456 | (1) |
|
7.4 Finite Element Formulation |
|
|
457 | (11) |
|
7.4.1 Time Integration: Dynamic Analysis |
|
|
460 | (1) |
|
|
460 | (3) |
|
7.4.2 Cyclic Unloading and Reloading |
|
|
463 | (3) |
|
|
466 | (1) |
|
|
467 | (1) |
|
7.5 Special Cases: Consolidation and Dynamics-Dry Problem |
|
|
468 | (6) |
|
|
468 | (2) |
|
7.5.1.1 Dynamics-Dry Problem |
|
|
470 | (1) |
|
|
471 | (3) |
|
|
474 | (83) |
|
7.6.1 Example 7.1: Dynamic Pile Load Tests: Coupled Behavior |
|
|
474 | (4) |
|
7.6.1.1 Simulation of Phases |
|
|
478 | (5) |
|
7.6.2 Example 7.2: Dynamic Analysis of Pile-Centrifuge Test including Liquefaction |
|
|
483 | (5) |
|
7.6.2.1 Comparison between Predictions and Test Data |
|
|
488 | (3) |
|
7.6.3 Example 7.3: Structure--Soil Problem Tested Using Centrifuge |
|
|
491 | (2) |
|
7.6.3.1 Material Properties |
|
|
493 | (4) |
|
|
497 | (1) |
|
7.6.4 Example 7.4: Cyclic and Liquefaction Response in Shake Table Test |
|
|
498 | (2) |
|
|
500 | (1) |
|
7.6.5 Example 7.5: Dynamic and Consolidation Response of Mine Tailing Dam |
|
|
501 | (8) |
|
7.6.5.1 Material Properties |
|
|
509 | (1) |
|
7.6.5.2 Finite Element Analysis |
|
|
510 | (1) |
|
|
511 | (1) |
|
7.6.5.4 Earthquake Analysis |
|
|
511 | (2) |
|
7.6.5.5 Design Quantities |
|
|
513 | (1) |
|
|
514 | (1) |
|
|
514 | (1) |
|
7.6.5.8 Validation for Flow Quantity |
|
|
515 | (1) |
|
7.6.5.9 Qx across a--b--c--d (Figure 7.40) |
|
|
516 | (1) |
|
7.6.6 Example 7.6: Soil--Structure Interaction: Effect of Interface Response |
|
|
517 | (1) |
|
|
518 | (3) |
|
7.6.7 Example 7.7: Dynamic Analysis of Simple Block |
|
|
521 | (2) |
|
7.6.8 Example 7.8: Dynamic Structure--Foundation Analysis |
|
|
523 | (5) |
|
|
528 | (2) |
|
7.6.9 Example 7.9: Consolidation of Layered Varved Clay Foundation |
|
|
530 | (1) |
|
7.6.9.1 Material Properties |
|
|
530 | (4) |
|
7.6.9.2 Field Measurements |
|
|
534 | (1) |
|
7.6.9.3 Finite Element Analysis |
|
|
534 | (2) |
|
7.6.10 Example 7.10: Axisymmetric Consolidation |
|
|
536 | (1) |
|
7.6.10.1 Details of Boundary Conditions |
|
|
537 | (2) |
|
|
539 | (1) |
|
7.6.11 Example 7.11: Two-Dimensional Nonlinear Consolidation |
|
|
540 | (1) |
|
|
540 | (2) |
|
7.6.12 Example 7.12: Subsidence Due to Consolidation |
|
|
542 | (1) |
|
7.6.12.1 Linear Analysis: Set 1 |
|
|
543 | (2) |
|
7.6.12.2 Nonlinear Analysis |
|
|
545 | (1) |
|
7.6.13 Example 7.13: Three-Dimensional Consolidation |
|
|
545 | (2) |
|
7.6.14 Example 7.14: Three-Dimensional Consolidation with Vacuum Preloading |
|
|
547 | (5) |
|
|
552 | (5) |
|
Appendix 1 Constitutive Models, Parameters, and Determination |
|
|
557 | (40) |
|
|
557 | (1) |
|
|
557 | (6) |
|
|
558 | (2) |
|
A1.2.2 Nonlinear Elasticity |
|
|
560 | (1) |
|
A1.2.3 Stress--Strain Behavior by Hyperbola |
|
|
560 | (1) |
|
A1.2.4 Parameter Determination for Hyperbolic Model |
|
|
560 | (1) |
|
|
561 | (2) |
|
|
563 | (1) |
|
A1.4 Hyperbolic Model for Interfaces/Joints |
|
|
563 | (3) |
|
A1.4.1 Unloading and Reloading in Hyperbolic Model |
|
|
565 | (1) |
|
A1.5 Ramberg--Osgood Model |
|
|
566 | (1) |
|
A1.6 Variable Moduli Models |
|
|
567 | (1) |
|
A1.7 Conventional Plasticity |
|
|
567 | (4) |
|
|
568 | (2) |
|
A1.7.1.1 Compression Test (σ1, σ2 = σ3) |
|
|
570 | (1) |
|
|
570 | (1) |
|
A1.7.3 Mohr-Coulomb Model |
|
|
570 | (1) |
|
A1.8 Continuous Yield Plasticity: Critical State Model |
|
|
571 | (5) |
|
|
574 | (2) |
|
A1.8.2 Limitations of Critical State and Cap Models |
|
|
576 | (1) |
|
A1.9 Hierarchical Single Surface Plasticity |
|
|
576 | (5) |
|
A1.9.1 Nonassociated Behavior (δ1-Model) |
|
|
578 | (1) |
|
|
578 | (1) |
|
|
578 | (1) |
|
|
578 | (1) |
|
A1.9.2.3 Transition Parameter: n |
|
|
579 | (1) |
|
|
580 | (1) |
|
A1.9.2.5 Cohesive Intercept |
|
|
581 | (1) |
|
A1.9.2.6 Nonassociative Parameter, κ |
|
|
581 | (1) |
|
|
581 | (3) |
|
|
583 | (1) |
|
A1.11 Disturbed State Concept Models |
|
|
584 | (10) |
|
|
586 | (1) |
|
|
587 | (2) |
|
A1.11.3 DSC Model for Interface or Joint |
|
|
589 | (5) |
|
|
594 | (3) |
|
A1.12.1 Parameters for Soils, Rocks, and Interfaces/Joints |
|
|
594 | (1) |
|
|
595 | (2) |
|
Appendix 2 Computer Software or Codes |
|
|
597 | (4) |
|
|
597 | (1) |
|
A2.2 List 1: Finite Element Software System: DSC Software |
|
|
597 | (1) |
|
A2.3 List 2: Commercial Codes |
|
|
598 | (3) |
Index |
|
601 | |