Muutke küpsiste eelistusi

E-raamat: Advanced Liquid Metal Cooling For Chip, Device And System

(Tsinghua Univ, China)
  • Formaat: 960 pages
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811245879
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 146,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 960 pages
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811245879
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This compendium summarizes the core principles and practical applications of a brand-new advanced chip cooling category — liquid metal cooling. It illustrates the science and art of room temperature liquid metal enabled cooling for chip, device and system. The concise volume features unique scientific and practical merits, and clarified intriguing liquid metal coolant or medium behaviors in making new generation powerful cooling system. With both uniquely important fundamental and practical values, this useful reference text benefits researchers to set up their foundation and then find new ways of making advanced cooling system to fulfil the increasingly urgent needs in modern highly integrated chip industry.

Foreword v
Abstract ix
Preface xi
About the Author xvii
Chapter 1 Introduction
1(60)
1.1 Growing Challenges in Advanced Cooling
2(3)
1.2 Water Cooling and New Alternatives
5(2)
1.3 Basic Features of Conventional Heat Exchangers
7(9)
1.3.1 Heat exchanger classification by geometry and structure
9(6)
1.3.2 Heat exchange enhancement techniques
15(1)
1.4 Limitations of Water-based Heat Exchanger
16(3)
1.4.1 Overall properties of water
16(1)
1.4.2 Adhesion and cohesion
17(1)
1.4.3 Surface tension
18(1)
1.4.4 Specific heat
18(1)
1.4.5 Conductivity
18(1)
1.5 Liquid Metal Coolant for Chip Cooling
19(3)
1.6 Some Facts About Liquid Metal
22(2)
1.7 Revisiting Traditional Liquid Metal Cooling
24(4)
1.8 Liquid Metal Enabled Innovation in Conventional Heat Exchanger
28(1)
1.9 Potential Application Areas of Liquid Metal Thermal Management
29(13)
1.9.1 Chip cooling
30(2)
1.9.2 Heat recovery
32(2)
1.9.3 Energy systems
34(2)
1.9.4 Heat transfer process engineering
36(1)
1.9.5 Space exploration
37(1)
1.9.6 Appliances in large power systems
38(1)
1.9.7 Thermal interface material
38(1)
1.9.8 More new conceptual applications
39(3)
1.10 Technical and Scientific Challenges in Liquid Metal Heat Transfer
42(3)
1.11 Conclusion
45(16)
References
46(15)
Chapter 2 Typical Liquid Metal Medium and Properties for Advanced Cooling
61(58)
2.1 Typical Properties of Liquid Metals
62(12)
2.1.1 Low melting point
62(1)
2.1.2 Thermal conductivity
63(5)
2.1.3 Surface tension
68(2)
2.1.4 Heat capacity
70(1)
2.1.5 Boiling temperature
70(1)
2.1.6 Sub-cooling point
70(1)
2.1.7 Viscosity
71(2)
2.1.8 Electrical properties
73(1)
2.1.9 Magnetic properties
73(1)
2.1.10 Chemical properties
74(1)
2.2 Alloy Candidates with Low Melting Point
74(4)
2.2.1 Overview
74(1)
2.2.2 GaIn alloy
75(2)
2.2.3 NaK alloy
77(1)
2.2.4 Wood's metal
77(1)
2.3 Nano Liquid Metal as More Conductive Coolant or Grease
78(8)
2.3.1 Technical concept of nano liquid metal
78(1)
2.3.2 Performance of typical nano liquid metals
79(7)
2.4 Liquid Metal Genome Toward New Material Discovery
86(3)
2.4.1 About liquid metal material genome
86(1)
2.4.2 Urgent needs of new liquid metals
87(1)
2.4.3 Category of room-temperature liquid metal genome
87(2)
2.5 Fundamental Methods for Development of New Liquid Metal Materials
89(6)
2.5.1 Alloying strategy from single metal element
89(2)
2.5.2 Making composites from binary liquid alloys
91(1)
2.5.3 Realizing composites from multicomponent liquid alloys
92(1)
2.5.4 Nano technological strategies
92(1)
2.5.5 Additional physical approaches
93(1)
2.5.6 Chemical strategies
94(1)
2.6 Fundamental Theories for Material Discovery
95(3)
2.6.1 Calculation of Phase Diagram (CALPHAD)
95(1)
2.6.2 First principle prediction
96(1)
2.6.3 Molecular dynamics simulation
97(1)
2.6.4 Other theoretical methods
98(1)
2.7 Experimental Ways for Material Discovery
98(2)
2.8 Theoretical and Technical Challenges
100(1)
2.9 Conclusion
101(18)
References
102(10)
Appendix 2.1
112(7)
Chapter 3 Fabrications and Characterizations of Liquid Metal Cooling Materials
119(48)
3.1 Preparation Methods
120(8)
3.1.1 Alloying
120(1)
3.1.2 Oxidizing
121(1)
3.1.3 Fabrication of liquid metal droplets
121(3)
3.1.4 Preparation of liquid metal nanoparticles
124(1)
3.1.5 Coating of liquid metal surface
124(3)
3.1.6 Loading with nanomaterials
127(1)
3.1.7 Compositing with other materials
128(1)
3.2 Characterizations of Functional Liquid Metal Materials
128(4)
3.2.1 Regulation of thermal properties
129(1)
3.2.2 Regulation of electrical properties
130(1)
3.2.3 Regulation of magnetic properties
130(1)
3.2.4 Regulation of fluidic properties
131(1)
3.2.5 Regulation of chemical properties
131(1)
3.3 Liquid Metal as Energy Harvesting or Conversion Medium
132(1)
3.4 Low-Temperature Liquid Metal Used in Harsh Environment
132(5)
3.4.1 Working of liquid metal under cryogenic condition
132(2)
3.4.2 Basics of cryogenic cooling
134(3)
3.5 Potential Metal Candidates with Melting Point below Zero Centigrade
137(9)
3.5.1 Mercury
139(1)
3.5.2 Particularities of gallium or its alloys
140(2)
3.5.3 Alkali metal and its alloys
142(4)
3.6 Preparation Methods of Low-Temperature Liquid Metal
146(6)
3.6.1 Phase diagram calculation
147(1)
3.6.2 Subcooling of metal melt
148(2)
3.6.3 Experimental approaches
150(2)
3.7 Potential Roles for Future Low-Temperature Liquid Metal
152(3)
3.8 Conclusion
155(12)
References
155(12)
Chapter 4 Corrosion Issues in Liquid Metal-based Thermal Management
167(28)
4.1 Corrosions Caused by Liquid Metal on Specific Substrates
168(2)
4.2 Characterization of Liquid Metal Corrosion
170(2)
4.3 Corrosion Trends of Typical Substrates with Liquid Gallium
172(2)
4.4 Microscopic SEM/EDS Observation and Analysis
174(6)
4.4.1 SEM quantification of corroded surface
174(2)
4.4.2 EDS quantification of corroded surface
176(3)
4.4.3 EDS quantification of corroded cross-section
179(1)
4.5 Factors Affecting the Liquid Metal Corrosion
180(3)
4.6 Anti-Corrosion of LM on Substrate
183(2)
4.7 Quantification of Gallium Alloy on Anodic Oxidation Aluminum
185(6)
4.7.1 Thermal transfer simulation and setting of anodized aluminum alloy
186(3)
4.7.2 Thermal transfer performance
189(1)
4.7.3 Corrosion resistance of anodized aluminum alloy
189(2)
4.8 Conclusion
191(4)
References
192(3)
Chapter 5 Nano Liquid Metal for Development of Enhanced Materials
195(40)
5.1 Typical Features of Nano Liquid Metals
197(1)
5.2 Applications of Nano Liquid Metals
198(5)
5.2.1 Energy management
198(1)
5.2.2 Energy conversion
199(1)
5.2.3 Energy storage
200(1)
5.2.4 Interactions between liquid metal and micro/nano particles
201(1)
5.2.5 Fabrication of micro/nano liquid metal droplets
201(1)
5.2.6 Fabrication of micro/nano liquid metal motors
202(1)
5.3 Scientific and Technical Challenges
203(1)
5.4 Fabrication of Magnetic Nano Liquid Metal
204(1)
5.5 Nanoparticles Enabled Magnetic Liquid Metal Materials
205(8)
5.6 Liquid Metal Phagocytosis Effect to Make Functional Materials
213(12)
5.7 Conclusion
225(10)
References
226(9)
Chapter 6 Liquid Metal-based Thermal Interface Material
235(82)
6.1 About Thermal Interface Materials
236(2)
6.2 Gallium-based Thermal Interface Materials
238(3)
6.2.1 Preparation of GBTIM
238(1)
6.2.2 Characterization of GBTIM
238(3)
6.3 Practical Working of Gallium-based Thermal Interface Materials
241(8)
6.4 Liquid Metal Amalgams with Enhanced and Tunable Thermal Properties
249(2)
6.5 Performance Evaluation of Liquid Metal Amalgams
251(18)
6.5.1 Material preparation and characterization
251(4)
6.5.2 Chemical composition characterization
255(4)
6.5.3 Characterization of electrical and thermal conductivities
259(2)
6.5.4 DSC characterization
261(2)
6.5.5 Mechanical properties characterization
263(3)
6.5.6 Adhesion-guaranteed direct painting
266(1)
6.5.7 Formability-guaranteed molding
267(2)
6.6 Thermally Conductive and Electrically Resistive TIM
269(2)
6.7 Fabrication of Thermally Conductive and Electrically Resistive TIM
271(13)
6.7.1 Fabrication principle
271(2)
6.7.2 Characterization of LMP grease
273(1)
6.7.3 Performance of LMP grease
273(11)
6.8 Metallic Bond Enabled Wetting between Liquid Metal and Metal Substrate
284(15)
6.8.1 Metallic bond enabled wetting behavior at liquid Ga/CuGa2 interfaces
284(2)
6.8.2 Quantification
286(2)
6.8.3 Theoretical simulation
288(11)
6.9 Bulk Expansion Effect of Gallium-based Thermal Interface Material
299(7)
6.9.1 Experimental phenomena
299(2)
6.9.2 Influencing factors
301(2)
6.9.3 Material characterization
303(3)
6.10 Conclusion
306(11)
References
308(9)
Chapter 7 Low Melting Point Metal Enabled Phase Change Cooling
317(122)
7.1 About Phase Change Materials
318(2)
7.2 Classification of PCMs
320(3)
7.3 Typical Features of Low Melting Point Metals as PCMs
323(3)
7.3.1 Selection criterion of PCMs
323(2)
7.3.2 Properties of low melting point metal PCMs
325(1)
7.4 Case of Using Low Melting Point Metal PCM for Smart Cooling of USB Disk
326(4)
7.5 Case of Using Low Melting Point Metal PCM for Smart Cooling of Mobile Phone
330(14)
7.6 Potential Application Areas of Low Melting Point Metal
344(22)
7.6.1 PCM used in solar energy
344(4)
7.6.2 PCM used in thermal comfort maintenance
348(4)
7.6.3 PCM used in building heat storage
352(7)
7.6.4 PCM used in thermal management of various electronic devices
359(5)
7.6.5 PCM used in anti-laser heating
364(2)
7.7 Theory to Quantify Phase Change Process of Low Melting Point Metal
366(13)
7.7.1 Enthalpy--Porosity method
366(2)
7.7.2 Validation of numerical method
368(1)
7.7.3 Comparison with conventional PCM paraffin
369(5)
7.7.4 Dimensionless correlations: constant wall temperature
374(2)
7.7.5 Dimensionless correlations: constant heat flux
376(1)
7.7.6 Discussion on high Ra number condition
377(2)
7.8 Phase Change of Low Melting Point Metal Around Horizontal Cylinder
379(12)
7.8.1 Physical model
379(4)
7.8.2 Comparison with conventional PCM paraffin
383(3)
7.8.3 Constant wall temperature case
386(3)
7.8.4 Constant wall heat flux case
389(2)
7.9 Low Melting Point Metal PCM Heat Sink with Internal Fins
391(13)
7.9.1 Performance enhancement of low melting point metal PCM
391(1)
7.9.2 PCM preparation and characterization
392(2)
7.9.3 Experimental setup
394(2)
7.9.4 Transient thermal performance
396(3)
7.9.5 Cyclic performance
399(2)
7.9.6 Numerical modeling
401(3)
7.10 Optimization of Low Melting Point Metal PCM Heat Sink
404(15)
7.10.1 Optimization of PCM
404(1)
7.10.2 Theoretical evaluation
405(2)
7.10.3 Problem description
407(2)
7.10.4 Numerical method
409(1)
7.10.5 Effect of fin number
410(3)
7.10.6 Effect of fin width fraction
413(2)
7.10.7 Base thickness and structural material
415(1)
7.10.8 Heating condition
416(3)
7.11 Lattice Boltzmann Modeling of Phase Change of Low Melting Point Metal
419(3)
7.12 Emerging Scientific Issues and Technical Challenges
422(1)
7.13 Conclusion
423(16)
References
425(14)
Chapter 8 Fluidic Properties of Liquid Metal
439(62)
8.1 Splashing Phenomena of Liquid Metal Droplet
440(17)
8.1.1 On the impact of liquid metal droplets
440(1)
8.1.2 Experiments on impact of liquid metal droplets
441(2)
8.1.3 Droplet shapes during the impact dynamics
443(4)
8.1.4 Quantification of the impact process
447(6)
8.1.5 Splashing shapes
453(4)
8.2 Impact Dynamics of Water Film Coated Liquid Metal Droplet
457(10)
8.2.1 Water film coated liquid metal droplet
457(2)
8.2.2 Impact dynamics of water film coated liquid metal droplet
459(8)
8.3 Hybrid Fluids Made of Liquid Metal and Allied Solution
467(2)
8.4 Fluidic Behaviors of Hybrid Liquid Metal and Solution
469(7)
8.4.1 Electric field actuated liquid metal flow
469(3)
8.4.2 Self-driven motion of liquid metal
472(2)
8.4.3 Coupled fields on liquid metal machine
474(2)
8.5 Theoretical Foundation of Liquid Metal Flow
476(7)
8.5.1 Physical and chemical properties of gallium
476(1)
8.5.2 Movement theory
477(4)
8.5.3 Deformation theory
481(2)
8.6 Theoretical Simulation Method
483(7)
8.6.1 Volume-of-fluid method
485(1)
8.6.2 Lattice Boltzmann method
486(1)
8.6.3 Boundary integral method
487(1)
8.6.4 Finite-element method
488(1)
8.6.5 Front-tracking method
489(1)
8.7 Challenges and Prospects
490(1)
8.8 Conclusion
491(10)
References
492(9)
Chapter 9 Liquid Metal Flow Cooling and its Applications in Diverse Areas
501(106)
9.1 Comparison between Liquid Metal Cooling and Water Cooling
502(8)
9.2 Electromagnetic Pump-Driven Liquid Metal Cooling
510(19)
9.3 Design of Practical Liquid Metal Cooling Device
529(4)
9.3.1 Thermal resistance evaluation theory
530(3)
9.4 Electromagnetic pump design principles
533(11)
9.4.1 Radiator design principles
535(1)
9.4.2 System fabrication and characterization
535(3)
9.4.3 System cooling capability evaluation
538(3)
9.4.4 Economic analysis and other practical issues
541(3)
9.5 Rotational Magnetic Field Induced Flow Cooling of Liquid Metal
544(4)
9.6 Liquid Metal Cooling for Thermal Management of High-Power LEDs
548(11)
9.6.1 Liquid metal cooling of LED
548(1)
9.6.2 Experimental setup
549(1)
9.6.3 Heat dissipation performance evaluation
550(6)
9.6.4 Liquid metal cooling of large-power street LED lamp
556(3)
9.7 Optimization of High-Performance Liquid Metal CPU Cooling
559(13)
9.7.1 Optimization criteria
560(1)
9.7.2 Schematic thermal resistance model
561(1)
9.7.3 Parameter optimization of electromagnetic pump
562(4)
9.7.4 Parameter optimization of fin radiator
566(1)
9.7.5 Product design and evaluation
567(5)
9.8 Liquid Metal Cooling System for More Practical Systems
572(4)
9.8.1 Liquid metal cooling for desktop and notebook computers
572(1)
9.8.2 Cooling transformer in electricity delivery via liquid metal
572(4)
9.9 Thermal Management of Li-ion Battery with Liquid Metal
576(17)
9.9.1 Cooling of electric vehicle
576(2)
9.9.2 Theoretical analysis
578(1)
9.9.3 Cooling capability evaluation
579(3)
9.9.4 Pump power consumption
582(3)
9.9.5 Temperature uniformity
585(1)
9.9.6 Numerical simulation model
586(2)
9.9.7 Computational results
588(5)
9.10 Thawing Issue of Frozen Liquid Metal Coolant
593(5)
9.11 Conclusion
598(9)
References
599(8)
Chapter 10 Self-Adaptable Liquid Metal Cooling
607(52)
10.1 Electromagnetic Driving of Liquid Metal Coolant
608(1)
10.2 Heat-driven Thermoelectric-Electromagnetic Generator
609(3)
10.3 Self-Adaptive Waste Heat-driven Liquid Metal Cooling
612(6)
10.4 Thermal Resistance Analysis of Heat-driven Liquid Metal Cooling System
618(5)
10.5 Thermosyphon Effect-driven Liquid Metal Cooling
623(8)
10.6 Thermal Resistance Analysis of Thermosyphon Effect-driven Liquid Metal Cooling
631(6)
10.7 Design of a Practical Self-Driven Liquid Metal Cooling Device in a Closed Cabinet
637(10)
10.7.1 Practical application of self-driven liquid metal cooling
637(1)
10.7.2 Cooling capability evaluation
638(3)
10.7.3 Convective heat transfer thermal resistance of liquid metal
641(4)
10.7.4 System fabrication and testing
645(2)
10.8 Working of a Practical Self-Driven Liquid Metal Cooling Device in a Closed Cabinet
647(7)
10.9 Conclusion
654(5)
References
655(4)
Chapter 11 Liquid Metal Cooling in Confined Spaces
659(70)
11.1 Liquid Metal-Based Miniaturized or Micro Chip Cooling Device
660(5)
11.1.1 Miniaturized chip cooling device
660(1)
11.1.2 MEMS-based chip cooling device
661(4)
11.1.3 MEMS-based liquid metal cooling device in harsh environments
665(1)
11.2 Heat Spreader Based on Room-Temperature Liquid Metal
665(9)
11.2.1 About heat spreader
665(1)
11.2.2 Fundamental equations
666(1)
11.2.3 Performance evaluation
667(7)
11.3 Liquid Metal Blade Heat Dissipator
674(9)
11.4 Liquid Metal-based Mini-/Micro-Channel Cooling Device
683(13)
11.4.1 About mini-/micro-channel cooling device
683(3)
11.4.2 Pressure difference under different coolant volume flows
686(2)
11.4.3 Convection coefficient under different coolant volume flows
688(1)
11.4.4 Thermal resistance under different pump powers
689(2)
11.4.5 Flow pattern discrimination
691(1)
11.4.6 Flow resistance comparison
692(2)
11.4.7 Convective heat transfer coefficient comparison
694(1)
11.4.8 Other flow issues
695(1)
11.4.9 Liquid metal alloy-based mini-channel heat exchanger
695(1)
11.5 Hybrid Mini-/Micro-Channel Heat Sink Based on Liquid Metal and Water
696(13)
11.5.1 Hybrid mini-/micro-channel heat sink
697(2)
11.5.2 Materials
699(1)
11.5.3 Test platform
699(3)
11.5.4 Cooling capability comparison with pure water cooling system
702(7)
11.6 Flow and Thermal Modeling and Optimization of Micro-/Mini-channel Heat Sink
709(15)
11.6.1 About micro-/mini-channel heat sink
709(1)
11.6.2 Flow and thermal model
710(2)
11.6.3 Optimization of micro-/mini-channel heat sink
712(2)
11.6.4 Micro-channel water cooling
714(1)
11.6.5 Channel aspect ratio
714(1)
11.6.6 Channel number and width ratio
715(2)
11.6.7 Velocity
717(1)
11.6.8 Base thickness
717(2)
11.6.9 Structural material
719(1)
11.6.10 Mini-channel liquid metal cooling
720(3)
11.6.11 Mini-channel water cooling
723(1)
11.7 Conclusion
724(5)
References
725(4)
Chapter 12 Hybrid Cooling via Liquid Metal and Aqueous Solution
729(82)
12.1 Electrically Driven Hybrid Cooling via Liquid Metal and Aqueous Solution
730(11)
12.1.1 Coolants and driving strategy
730(1)
12.1.2 System design
731(1)
12.1.3 Continuous actuation of circular motion of liquid metal sphere
732(1)
12.1.4 Heat transfer performance
733(2)
12.1.5 Thermal resistance components
735(2)
12.1.6 Heat transfer capacity under different driving voltages
737(1)
12.1.7 Electrical driving of liquid metal droplet
737(2)
12.1.8 Periodic circular motion of liquid metal droplet in different conditions
739(2)
12.1.9 More potential coolants with improved performances
741(1)
12.2 Alternating Electric Field-Actuated Liquid Metal Cooling
741(12)
12.2.1 Liquid metal as water driving pump
741(2)
12.2.2 Performance of the liquid metal droplet-driven flow
743(10)
12.3 Self-Driving Thermo-Pneumatic Liquid Metal for Cooling or Energy Harvesting
753(9)
12.3.1 Hybrid coolants for automatic heat-enabled driving
753(1)
12.3.2 Running of thermo-pneumatic liquid metal energy harvester
754(8)
12.4 Hybrid Liquid Metal--Water Cooling System for Heat Dissipation
762(14)
12.4.1 Combined liquid metal heat transport and water cooling
762(1)
12.4.2 Working performance of combined liquid metal and water cooling
763(8)
12.4.3 Theoretical analysis of combined liquid metal and water cooling
771(5)
12.5 Electromagnetic Driving Rotation of Hybrid Liquid Metal and Solution Pool
776(20)
12.5.1 Electromagnetic driving rotation of hybrid fluids
776(5)
12.5.2 Rotational motion of liquid metal in electromagnetic field
781(1)
12.5.3 Controlling the rotating motion of liquid metal pool
782(5)
12.5.4 Liquid metal patterns induced by electric capillary force
787(9)
12.6 Dynamic Interactions of Leidenfrost Droplets on Liquid Metal Surface
796(10)
12.7 Conclusion
806(5)
References
806(5)
Chapter 13 Liquid Metals for Harvesting Heat and Energy
811(74)
13.1 Direct Harvesting of Solar Thermal Power or Low-Grade Heat
814(1)
13.2 Liquid Metal-based Thermoelectric Generation
815(10)
13.3 Thermionic Technology
825(2)
13.4 Liquid Metal-based Magnetohydrodynamic Power Generation
827(2)
13.5 Alkali Metal-based Thermoelectric Conversion Technology
829(1)
13.6 Direct Solar Thermoelectric Power Generation
830(7)
13.7 Liquid Metal-Cooled Photovoltaic Cell
837(12)
13.7.1 Thermal management of solar cells with optical concentration
837(1)
13.7.2 Experimental system
838(1)
13.7.3 Performance evaluation
839(5)
13.7.4 Theoretical evaluation of thermal resistance
844(5)
13.8 Solar Thermionic Power Generation
849(6)
13.9 Magnetohydrodynamic and AMTEC Technologies
855(4)
13.10 Cascade System
859(2)
13.11 Remarks and Future Developments
861(3)
13.12 Harvesting Heat to Generate Electricity via Liquid Metal Thermosyphon Effect
864(5)
13.13 Liquid Metal Thermal Joint
869(10)
13.14 Conclusion
879(6)
References
879(6)
Chapter 14 Combinatorial Liquid Metal Heat Transfer toward Extreme Cooling
885(32)
14.1 Proposition of Combinatorial Liquid Metal Heat Transfer
886(3)
14.2 Basic Cooling System
889(8)
14.2.1 Abstract division of a cooling system
889(3)
14.2.2 Heat acquisition segment
892(2)
14.2.3 Heat rejection segment
894(1)
14.2.4 Heat transport segment
895(2)
14.3 LMPM PCM Combined Cooling System
897(5)
14.3.1 LMPM PCM cooling
897(5)
14.4 Liquid Metal Convection-based Cooling Systems
902(3)
14.5 All-Liquid Metal Combined Cooling System
905(1)
14.6 Other Alternative Combinations
905(2)
14.7 Conclusion
907(10)
References
907(10)
Index 917