Muutke küpsiste eelistusi

E-raamat: Advanced Machining and Manufacturing Processes

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers the various advanced manufacturing processes employed by manufacturing industries to improve their productivity in terms of socio-economic development.





The authors present automated conventional and non-conventional machining techniques as well as virtual machining principles and techniques. Material removal by mechanical, chemical, thermal and electrochemical processes are described in detail. 





A glossary of key concepts is attached at end of the book. 
Part I Automated Conventional Machining Techniques
1 Machine Tools: Numerical Control Perspective
3(6)
1.1 Introduction
3(1)
1.2 Material Removal Techniques
4(1)
1.3 Form and Size
5(1)
1.4 Kinematics Principles of Machining Operation
6(2)
1.4.1 Generation
6(1)
1.4.2 Copying
7(1)
1.4.3 Forming
7(1)
1.4.4 Surface Texture
7(1)
1.5 Conclusion
8(1)
2 Machine Tool Controls
9(10)
2.1 Introduction
9(1)
2.2 Levels of Control
9(3)
2.2.1 Zero Level of Control
9(1)
2.2.2 First Level of Control
10(1)
2.2.3 Second Level of Control
10(1)
2.2.4 Third Level of Control
11(1)
2.2.5 Fourth Level of Control
11(1)
2.2.6 Fifth Level of Control: Numerical Control
11(1)
2.3 Computer Numerical Control
12(2)
2.3.1 Functions of CNC
12(2)
2.3.2 Advantages of CNC Systems
14(1)
2.4 Direct Numerical Control
14(3)
2.4.1 Components of DNC Systems
14(1)
2.4.2 Functions of DNC
15(1)
2.4.3 Advantages of DNC
16(1)
2.5 Adaptive Control of Machining Systems
17(1)
2.6 Conclusion
18(1)
3 Introduction to Numerical Control Machines
19(10)
3.1 Introduction
19(1)
3.2 Basic Components of NC System
20(2)
3.2.1 Program of Instructions
20(1)
3.2.2 Controller Unit
20(1)
3.2.3 Machine Tool
21(1)
3.3 NC Procedure
22(1)
3.3.1 Process Planning
22(1)
3.3.2 Part Programming
22(1)
3.3.3 Tape Preparation
22(1)
3.3.4 Tape Verification
23(1)
3.3.5 Production
23(1)
3.4 NC Coordinate System
23(1)
3.5 NC Motion Control Systems
24(2)
3.5.1 Point-to-Point NC
25(1)
3.5.2 Straight Cut NC
25(1)
3.5.3 Contouring NC
25(1)
3.6 Applications of NC Systems
26(1)
3.7 Advantages of NC Systems
26(1)
3.8 Disadvantages
27(2)
4 Fundamentals of Part Programming
29(12)
4.1 Introduction
29(1)
4.2 Part Programming with CNC Lathe
29(4)
4.2.1 Co-ordinate System for a CNC Lathe
29(1)
4.2.2 Dimensioning Basics
30(1)
4.2.3 Miscellaneous and Preparatory Functions
30(1)
4.2.4 Part Programming for Turning Operation
30(3)
4.3 Part Programming with CNC Milling
33(1)
4.3.1 Miscellaneous and Preparatory Functions
33(1)
4.3.2 Part Programming for Linear and Circular Interpolation Using Milling Operation
33(1)
4.4 Part Programming with Electrical Discharge Machining (EDM)
34(3)
4.4.1 Program for Z Depth
34(3)
4.5 Conclusion
37(4)
Part II Non Conventional Machining Techniques
5 Introduction to Machining Processes
41(8)
5.1 Introduction
41(1)
5.2 History of Machining
41(2)
5.3 Traditional Machining
43(1)
5.3.1 Machining by Abrasion
43(1)
5.3.2 Machining by Cutting
44(1)
5.4 Non Traditional Machining
44(5)
5.4.1 Single Action Nontraditional Machining
45(1)
5.4.2 Hybrid Machining
46(1)
References
47(2)
6 Mechanical Machining
49(40)
6.1 Introduction
49(1)
6.2 Ultrasonic Machining
49(13)
6.2.1 Introduction
49(2)
6.2.2 Main Elements of an USM Tool
51(3)
6.2.3 The Material Removal Process and Models for MRR
54(1)
6.2.4 The Operating Characteristics of USM
55(3)
6.2.5 Surface Quality and Dimensional Accuracy
58(1)
6.2.6 Applications
59(3)
6.3 Water Jet Machining (WJM)
62(7)
6.3.1 Introduction
62(1)
6.3.2 Main Elements of Water Jet Machining
63(2)
6.3.3 Process Parameters
65(1)
6.3.4 Applications
66(2)
6.3.5 Advantages and Disadvantages of Water Jet Machining
68(1)
6.4 Abrasive Jet Machining (AJM)
69(5)
6.4.1 Introduction
69(1)
6.4.2 Main Elements of AJM
69(2)
6.4.3 Material Removal Rate in AJM and Machining Characteristics
71(1)
6.4.4 Applications
72(1)
6.4.5 Advantages and Disadvantages of AJM
73(1)
6.5 Abrasive Water Jet Machining (AWJM)
74(6)
6.5.1 Introduction
74(1)
6.5.2 Construction and Working of AWJM
74(2)
6.5.3 Working of AWJM Process
76(1)
6.5.4 Nozzle Characteristics
76(1)
6.5.5 Application of AWJM Process
77(2)
6.5.6 Advantages and Disadvantages of AWJM
79(1)
6.6 Ice Jet Machining (IJM)
80(1)
6.7 Magnetic Abrasive Finishing (MAF)
81(8)
6.7.1 Introduction
81(1)
6.7.2 Working Principle of MAF
81(1)
6.7.3 Material Removal in MAF
81(1)
6.7.4 Applications of MAF
82(2)
6.7.5 Advantages and Disadvantages of MAF
84(1)
References
84(5)
7 Chemical Machining
89(16)
7.1 Introduction
89(1)
7.2 Chemical Milling
89(7)
7.2.1 Introduction
89(2)
7.2.2 Tools for Chemical Milling
91(2)
7.2.3 Process Parameters in Chemical Milling
93(1)
7.2.4 Material Removal Rate
93(1)
7.2.5 Surface Finish and Accuracy in Chemical Milling
94(1)
7.2.6 Advantages and Disadvantages of Chemical Milling
95(1)
7.2.7 Applications
96(1)
7.3 Photochemical Milling
96(4)
7.3.1 Introduction
96(1)
7.3.2 Process Outline
97(1)
7.3.3 Applications
97(2)
7.3.4 Advantages and Limitations
99(1)
7.4 Electropolishing
100(5)
7.4.1 Introduction
100(1)
7.4.2 Surface Phenomenon Occurring During Electropolishing
100(1)
7.4.3 Electrolyte, Cathode and Viscous Layer
101(1)
7.4.4 Parameters Governing the Performance
102(1)
7.4.5 Applications
102(1)
7.4.6 Advantages and Limitations
103(1)
References
103(2)
8 Electrochemical Processes
105(18)
8.1 Introduction
105(1)
8.2 Electrochemical Machining
105(9)
8.2.1 Introduction
105(1)
8.2.2 Theoretical Background
106(1)
8.2.3 Working Principle of ECM
107(1)
8.2.4 Machining Equipments of ECM
108(1)
8.2.5 Characteristics of ECM
109(3)
8.2.6 Applications
112(2)
8.2.7 Advantages and Disadvantages of ECM
114(1)
8.3 Electrochemical Drilling
114(2)
8.4 Shaped Tube Electrolytic Machining
116(2)
8.5 Electro Stream (Capillary) Drilling
118(2)
8.6 Electrochemical Jet Drilling
120(1)
8.7 Electrochemical Deburring
121(2)
8.7.1 Working Mechanism of ECD
122(1)
8.7.2 Advantages
122(1)
References
122(1)
9 Thermal Processes
123(30)
9.1 Introduction
123(1)
9.2 Electrodischarge Machining
123(10)
9.2.1 Introduction
123(1)
9.2.2 Process Mechanism
124(2)
9.2.3 The Machining System
126(1)
9.2.4 Power Supply
126(1)
9.2.5 Electrodes
126(1)
9.2.6 Dielectric Fluids
127(1)
9.2.7 Material Removal
128(1)
9.2.8 Surface Integrity
128(1)
9.2.9 Heat Affected Zone
129(1)
9.2.10 Applications
130(2)
9.2.11 Advantages and Disadvantages of EDM
132(1)
9.3 Laser Beam Machining
133(6)
9.3.1 Introduction
133(1)
9.3.2 Principles of LBM
134(2)
9.3.3 LBM Variations
136(1)
9.3.4 Laser-Based Cross/Hybrid/Assisted Machining
137(1)
9.3.5 LBM Applications
138(1)
9.3.6 Advantages and Disadvantages
139(1)
9.4 Electron Beam Machining
139(5)
9.4.1 Introduction
139(1)
9.4.2 Machine Set up and Material Removal Process
139(3)
9.4.3 Applications
142(1)
9.4.4 Advantages and Disadvantages
143(1)
9.5 Plasma Beam Machining
144(3)
9.5.1 Introduction
144(1)
9.5.2 The Machining System
144(2)
9.5.3 Material Removal Rate
146(1)
9.5.4 Applications
146(1)
9.5.5 Advantages and Disadvantages
147(1)
9.6 Ion Beam Machining (IBM)
147(6)
9.6.1 Introduction
147(1)
9.6.2 Material Removal Rate
148(1)
9.6.3 Accuracy and Surface Effects
148(1)
9.6.4 Applications
148(1)
References
149(4)
10 Hybrid Electrochemical Process
153(16)
10.1 Introduction
153(1)
10.2 Electrochemical Grinding
154(3)
10.2.1 Introduction
154(1)
10.2.2 Material Removal Rate
155(1)
10.2.3 Accuracy and Surface Quality
156(1)
10.2.4 Applications
156(1)
10.2.5 Advantages and Disadvantages
157(1)
10.3 Electrochemical Honing
157(3)
10.3.1 Introduction
157(1)
10.3.2 Process Characteristics
158(1)
10.3.3 Applications
159(1)
10.3.4 Advantages and Limitations
160(1)
10.4 Electrochemical Superfinishing
160(2)
10.4.1 Introduction
160(1)
10.4.2 Material Removal Process
161(1)
10.5 Electrochemical Buffing
162(1)
10.5.1 Introduction
162(1)
10.5.2 Material Removal Process
163(1)
10.6 Ultrasonic-Assisted ECM
163(2)
10.6.1 Introduction
163(1)
10.6.2 Material Removal Process
164(1)
10.7 Laser-Assisted ECM
165(4)
References
165(4)
Part III Virtual Manufacturing
11 Introduction to Virtual Manufacturing
169(12)
11.1 Introduction
169(1)
11.2 Taxonomy for Virtual Manufacturing and Virtual Machine Tool
170(1)
11.3 Virtual Reality Based Systems
171(1)
11.4 Web Based Systems
172(3)
11.5 Mathematical Modeling
175(1)
11.6 Hardware Interaction
176(2)
11.7 Conclusion
178(3)
References
178(3)
12 Virtual Manufacturing of Transmission Elements: A Case Study with Gears
181(14)
12.1 Introduction
181(1)
12.2 Methodology Adopted
182(1)
12.2.1 Generation of Spur Gear
182(1)
12.2.2 Generation of Helical Gears
182(1)
12.3 Process of Chip Formation
183(2)
12.3.1 Type of Chip
183(1)
12.3.2 Path of Chip Movement
183(1)
12.3.3 Chip Thickness and Chip Curling
183(2)
12.3.4 Contraction of Chip
185(1)
12.4 Software
185(9)
12.4.1 Start Module
186(1)
12.4.2 Input Module
186(3)
12.4.3 Cutter Generation Module
189(2)
12.4.4 Gear Generation Module
191(1)
12.4.5 Virtual Manufacturing Module
192(1)
12.4.6 Special Module
192(2)
12.5 Conclusion
194(1)
References
194(1)
13 Virtual Manufacturing: Scope, Socio-economic Aspects and Future Trends
195
13.1 Introduction
195(1)
13.2 Scope of Virtual Manufacturing
195(2)
13.2.1 Design-Centered VM
196(1)
13.2.2 Production Centered VM
196(1)
13.2.3 Control Centered VM
196(1)
13.3 Economics and Socio-economic Aspects of VM
197(1)
13.4 Economic Aspects
198(1)
13.5 Trends and Exploitable Results
199(1)
13.5.1 Machine Tool
199(1)
13.5.2 Automotive
199(1)
13.5.3 Aerospace
200(1)
13.6 Future Scope of VM
200
References
201
Kaushik Kumar is an Associate Professor in the Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India. His areas of teaching and research interest are CAD / CAM, Quality Management Systems, Optimization, Non-conventional machining, Rapid Prototyping and Composites.





Divya Zindani is a PhD student working on Manufacturing Engineering, Industrial Engineering, CAD/CAM/CAE and Rapid  Prototyping.





J. Paulo Davim is a Professor at the Department of Mechanical Engineering of the University of Aveiro. He has about 30 years of teaching and research experience in Manufacturing, Materials and Mechanical Engineering with special emphasis in Machining & Tribology.