|
Part I Automated Conventional Machining Techniques |
|
|
|
1 Machine Tools: Numerical Control Perspective |
|
|
3 | (6) |
|
|
3 | (1) |
|
1.2 Material Removal Techniques |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.4 Kinematics Principles of Machining Operation |
|
|
6 | (2) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (10) |
|
|
9 | (1) |
|
|
9 | (3) |
|
2.2.1 Zero Level of Control |
|
|
9 | (1) |
|
2.2.2 First Level of Control |
|
|
10 | (1) |
|
2.2.3 Second Level of Control |
|
|
10 | (1) |
|
2.2.4 Third Level of Control |
|
|
11 | (1) |
|
2.2.5 Fourth Level of Control |
|
|
11 | (1) |
|
2.2.6 Fifth Level of Control: Numerical Control |
|
|
11 | (1) |
|
2.3 Computer Numerical Control |
|
|
12 | (2) |
|
|
12 | (2) |
|
2.3.2 Advantages of CNC Systems |
|
|
14 | (1) |
|
2.4 Direct Numerical Control |
|
|
14 | (3) |
|
2.4.1 Components of DNC Systems |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.5 Adaptive Control of Machining Systems |
|
|
17 | (1) |
|
|
18 | (1) |
|
3 Introduction to Numerical Control Machines |
|
|
19 | (10) |
|
|
19 | (1) |
|
3.2 Basic Components of NC System |
|
|
20 | (2) |
|
3.2.1 Program of Instructions |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
3.5 NC Motion Control Systems |
|
|
24 | (2) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
3.6 Applications of NC Systems |
|
|
26 | (1) |
|
3.7 Advantages of NC Systems |
|
|
26 | (1) |
|
|
27 | (2) |
|
4 Fundamentals of Part Programming |
|
|
29 | (12) |
|
|
29 | (1) |
|
4.2 Part Programming with CNC Lathe |
|
|
29 | (4) |
|
4.2.1 Co-ordinate System for a CNC Lathe |
|
|
29 | (1) |
|
4.2.2 Dimensioning Basics |
|
|
30 | (1) |
|
4.2.3 Miscellaneous and Preparatory Functions |
|
|
30 | (1) |
|
4.2.4 Part Programming for Turning Operation |
|
|
30 | (3) |
|
4.3 Part Programming with CNC Milling |
|
|
33 | (1) |
|
4.3.1 Miscellaneous and Preparatory Functions |
|
|
33 | (1) |
|
4.3.2 Part Programming for Linear and Circular Interpolation Using Milling Operation |
|
|
33 | (1) |
|
4.4 Part Programming with Electrical Discharge Machining (EDM) |
|
|
34 | (3) |
|
4.4.1 Program for Z Depth |
|
|
34 | (3) |
|
|
37 | (4) |
|
Part II Non Conventional Machining Techniques |
|
|
|
5 Introduction to Machining Processes |
|
|
41 | (8) |
|
|
41 | (1) |
|
|
41 | (2) |
|
5.3 Traditional Machining |
|
|
43 | (1) |
|
5.3.1 Machining by Abrasion |
|
|
43 | (1) |
|
5.3.2 Machining by Cutting |
|
|
44 | (1) |
|
5.4 Non Traditional Machining |
|
|
44 | (5) |
|
5.4.1 Single Action Nontraditional Machining |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (40) |
|
|
49 | (1) |
|
|
49 | (13) |
|
|
49 | (2) |
|
6.2.2 Main Elements of an USM Tool |
|
|
51 | (3) |
|
6.2.3 The Material Removal Process and Models for MRR |
|
|
54 | (1) |
|
6.2.4 The Operating Characteristics of USM |
|
|
55 | (3) |
|
6.2.5 Surface Quality and Dimensional Accuracy |
|
|
58 | (1) |
|
|
59 | (3) |
|
6.3 Water Jet Machining (WJM) |
|
|
62 | (7) |
|
|
62 | (1) |
|
6.3.2 Main Elements of Water Jet Machining |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (2) |
|
6.3.5 Advantages and Disadvantages of Water Jet Machining |
|
|
68 | (1) |
|
6.4 Abrasive Jet Machining (AJM) |
|
|
69 | (5) |
|
|
69 | (1) |
|
6.4.2 Main Elements of AJM |
|
|
69 | (2) |
|
6.4.3 Material Removal Rate in AJM and Machining Characteristics |
|
|
71 | (1) |
|
|
72 | (1) |
|
6.4.5 Advantages and Disadvantages of AJM |
|
|
73 | (1) |
|
6.5 Abrasive Water Jet Machining (AWJM) |
|
|
74 | (6) |
|
|
74 | (1) |
|
6.5.2 Construction and Working of AWJM |
|
|
74 | (2) |
|
6.5.3 Working of AWJM Process |
|
|
76 | (1) |
|
6.5.4 Nozzle Characteristics |
|
|
76 | (1) |
|
6.5.5 Application of AWJM Process |
|
|
77 | (2) |
|
6.5.6 Advantages and Disadvantages of AWJM |
|
|
79 | (1) |
|
6.6 Ice Jet Machining (IJM) |
|
|
80 | (1) |
|
6.7 Magnetic Abrasive Finishing (MAF) |
|
|
81 | (8) |
|
|
81 | (1) |
|
6.7.2 Working Principle of MAF |
|
|
81 | (1) |
|
6.7.3 Material Removal in MAF |
|
|
81 | (1) |
|
6.7.4 Applications of MAF |
|
|
82 | (2) |
|
6.7.5 Advantages and Disadvantages of MAF |
|
|
84 | (1) |
|
|
84 | (5) |
|
|
89 | (16) |
|
|
89 | (1) |
|
|
89 | (7) |
|
|
89 | (2) |
|
7.2.2 Tools for Chemical Milling |
|
|
91 | (2) |
|
7.2.3 Process Parameters in Chemical Milling |
|
|
93 | (1) |
|
7.2.4 Material Removal Rate |
|
|
93 | (1) |
|
7.2.5 Surface Finish and Accuracy in Chemical Milling |
|
|
94 | (1) |
|
7.2.6 Advantages and Disadvantages of Chemical Milling |
|
|
95 | (1) |
|
|
96 | (1) |
|
7.3 Photochemical Milling |
|
|
96 | (4) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (2) |
|
7.3.4 Advantages and Limitations |
|
|
99 | (1) |
|
|
100 | (5) |
|
|
100 | (1) |
|
7.4.2 Surface Phenomenon Occurring During Electropolishing |
|
|
100 | (1) |
|
7.4.3 Electrolyte, Cathode and Viscous Layer |
|
|
101 | (1) |
|
7.4.4 Parameters Governing the Performance |
|
|
102 | (1) |
|
|
102 | (1) |
|
7.4.6 Advantages and Limitations |
|
|
103 | (1) |
|
|
103 | (2) |
|
8 Electrochemical Processes |
|
|
105 | (18) |
|
|
105 | (1) |
|
8.2 Electrochemical Machining |
|
|
105 | (9) |
|
|
105 | (1) |
|
8.2.2 Theoretical Background |
|
|
106 | (1) |
|
8.2.3 Working Principle of ECM |
|
|
107 | (1) |
|
8.2.4 Machining Equipments of ECM |
|
|
108 | (1) |
|
8.2.5 Characteristics of ECM |
|
|
109 | (3) |
|
|
112 | (2) |
|
8.2.7 Advantages and Disadvantages of ECM |
|
|
114 | (1) |
|
8.3 Electrochemical Drilling |
|
|
114 | (2) |
|
8.4 Shaped Tube Electrolytic Machining |
|
|
116 | (2) |
|
8.5 Electro Stream (Capillary) Drilling |
|
|
118 | (2) |
|
8.6 Electrochemical Jet Drilling |
|
|
120 | (1) |
|
8.7 Electrochemical Deburring |
|
|
121 | (2) |
|
8.7.1 Working Mechanism of ECD |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (30) |
|
|
123 | (1) |
|
9.2 Electrodischarge Machining |
|
|
123 | (10) |
|
|
123 | (1) |
|
|
124 | (2) |
|
9.2.3 The Machining System |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (2) |
|
9.2.11 Advantages and Disadvantages of EDM |
|
|
132 | (1) |
|
|
133 | (6) |
|
|
133 | (1) |
|
|
134 | (2) |
|
|
136 | (1) |
|
9.3.4 Laser-Based Cross/Hybrid/Assisted Machining |
|
|
137 | (1) |
|
|
138 | (1) |
|
9.3.6 Advantages and Disadvantages |
|
|
139 | (1) |
|
9.4 Electron Beam Machining |
|
|
139 | (5) |
|
|
139 | (1) |
|
9.4.2 Machine Set up and Material Removal Process |
|
|
139 | (3) |
|
|
142 | (1) |
|
9.4.4 Advantages and Disadvantages |
|
|
143 | (1) |
|
9.5 Plasma Beam Machining |
|
|
144 | (3) |
|
|
144 | (1) |
|
9.5.2 The Machining System |
|
|
144 | (2) |
|
9.5.3 Material Removal Rate |
|
|
146 | (1) |
|
|
146 | (1) |
|
9.5.5 Advantages and Disadvantages |
|
|
147 | (1) |
|
9.6 Ion Beam Machining (IBM) |
|
|
147 | (6) |
|
|
147 | (1) |
|
9.6.2 Material Removal Rate |
|
|
148 | (1) |
|
9.6.3 Accuracy and Surface Effects |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (4) |
|
10 Hybrid Electrochemical Process |
|
|
153 | (16) |
|
|
153 | (1) |
|
10.2 Electrochemical Grinding |
|
|
154 | (3) |
|
|
154 | (1) |
|
10.2.2 Material Removal Rate |
|
|
155 | (1) |
|
10.2.3 Accuracy and Surface Quality |
|
|
156 | (1) |
|
|
156 | (1) |
|
10.2.5 Advantages and Disadvantages |
|
|
157 | (1) |
|
10.3 Electrochemical Honing |
|
|
157 | (3) |
|
|
157 | (1) |
|
10.3.2 Process Characteristics |
|
|
158 | (1) |
|
|
159 | (1) |
|
10.3.4 Advantages and Limitations |
|
|
160 | (1) |
|
10.4 Electrochemical Superfinishing |
|
|
160 | (2) |
|
|
160 | (1) |
|
10.4.2 Material Removal Process |
|
|
161 | (1) |
|
10.5 Electrochemical Buffing |
|
|
162 | (1) |
|
|
162 | (1) |
|
10.5.2 Material Removal Process |
|
|
163 | (1) |
|
10.6 Ultrasonic-Assisted ECM |
|
|
163 | (2) |
|
|
163 | (1) |
|
10.6.2 Material Removal Process |
|
|
164 | (1) |
|
|
165 | (4) |
|
|
165 | (4) |
|
Part III Virtual Manufacturing |
|
|
|
11 Introduction to Virtual Manufacturing |
|
|
169 | (12) |
|
|
169 | (1) |
|
11.2 Taxonomy for Virtual Manufacturing and Virtual Machine Tool |
|
|
170 | (1) |
|
11.3 Virtual Reality Based Systems |
|
|
171 | (1) |
|
|
172 | (3) |
|
11.5 Mathematical Modeling |
|
|
175 | (1) |
|
11.6 Hardware Interaction |
|
|
176 | (2) |
|
|
178 | (3) |
|
|
178 | (3) |
|
12 Virtual Manufacturing of Transmission Elements: A Case Study with Gears |
|
|
181 | (14) |
|
|
181 | (1) |
|
|
182 | (1) |
|
12.2.1 Generation of Spur Gear |
|
|
182 | (1) |
|
12.2.2 Generation of Helical Gears |
|
|
182 | (1) |
|
12.3 Process of Chip Formation |
|
|
183 | (2) |
|
|
183 | (1) |
|
12.3.2 Path of Chip Movement |
|
|
183 | (1) |
|
12.3.3 Chip Thickness and Chip Curling |
|
|
183 | (2) |
|
12.3.4 Contraction of Chip |
|
|
185 | (1) |
|
|
185 | (9) |
|
|
186 | (1) |
|
|
186 | (3) |
|
12.4.3 Cutter Generation Module |
|
|
189 | (2) |
|
12.4.4 Gear Generation Module |
|
|
191 | (1) |
|
12.4.5 Virtual Manufacturing Module |
|
|
192 | (1) |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
194 | (1) |
|
13 Virtual Manufacturing: Scope, Socio-economic Aspects and Future Trends |
|
|
195 | |
|
|
195 | (1) |
|
13.2 Scope of Virtual Manufacturing |
|
|
195 | (2) |
|
13.2.1 Design-Centered VM |
|
|
196 | (1) |
|
13.2.2 Production Centered VM |
|
|
196 | (1) |
|
13.2.3 Control Centered VM |
|
|
196 | (1) |
|
13.3 Economics and Socio-economic Aspects of VM |
|
|
197 | (1) |
|
|
198 | (1) |
|
13.5 Trends and Exploitable Results |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | |
|
|
201 | |