Muutke küpsiste eelistusi

E-raamat: Advanced Materials Interfaces

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Advanced Material Series
  • Ilmumisaeg: 22-Jun-2016
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119242758
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 242,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Advanced Material Series
  • Ilmumisaeg: 22-Jun-2016
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119242758
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advanced Material Interfaces is a state-of-the-art look at innovative methodologies and strategies adopted for interfaces and their applications. The 13 chapters are written by eminent researchers not only elaborate complex interfaces fashioned of solids, liquids, and gases, but also ensures cross-disciplinary mixture and blends of physics, chemistry, materials science, engineering and life sciences. Advanced interfaces operate fundamental roles in essentially all integrated devices. It is therefore of the utmost urgency to focus on how newly-discovered fundamental constituents and interfacial progressions can be materialized and used for precise purposes. Interfaces are associated in wide multiplicity of application spectrum from chemical catalysis to drug functions and the advancement is funnelled by fine-tuning of our fundamental understanding of the interface effects.
Preface xiii
Part 1 Interfaces Design, Fabrication, and Properties
1 Mixed Protein/Polymer Nanostructures at Interfaces
3(34)
Aristeidis Papagiannopoulos
Stergios Pispas
1.1 Introduction
3(1)
1.2 Neutral and Charged Macromolecules at Interfaces
4(3)
1.3 Interfacial Experimental Methods
7(2)
1.4 Interactions of Proteins with Polymer-Free Interfaces
9(2)
1.5 Polymers and Proteins in Solution
11(3)
1.6 Proteins at Polymer-Modified Interfaces
14(12)
1.6.1 Steric Effects
15(6)
1.6.2 Polyelectrolyte Multilayers: Electrostatic Nature of Interactions
21(2)
1.6.3 Counterion Release: Charge Anisotropy
23(3)
1.7 Protein-Loaded Interfaces with Potential for Applications
26(4)
1.8 Conclusions
30(1)
References
30(7)
2 Exploitation of Self-Assembly Phenomena in Liquid-Crystalline Polymer Phases for Obtaining Multifunctional Materials
37(26)
M. Giamberini
G. Malucelli
2.1 Introduction
37(4)
2.2 Amphiphilic Self-Assembled LCPs
41(3)
2.3 Self-Assembled LCPs Through External Stimuli
44(4)
2.4 Supramolecular Self-Assembled LCPs
48(6)
2.5 Self-Assembled LCPs Through Surface Effects
54(3)
2.6 Conclusions and Perspectives
57(2)
References
59(4)
3 Scanning Probe Microscopy of Functional Materials Surfaces and Interfaces
63(64)
Pankaj Sharma
Jan Seidel
3.1 Introduction
64(1)
3.2 Scanning Probe Microscopy Approach
65(20)
3.2.1 Piezoresponse Force Microscopy
68(1)
3.2.1.1 Advanced Modes of PFM
73(1)
3.2.1.2 Enhancing Temporal Resolution
76(3)
3.2.2 Conductive-Atomic Force Microscopy
79(2)
3.2.3 Kelvin Probe Force Microscopy
81(4)
3.3 Functional Material Surfaces and Interfaces
85(26)
3.3.1 Ferroelectric Tunnel Junctions
86(7)
3.3.2 Ferroic Domain Walls and Structural-Phase Boundaries
93(2)
3.3.3 Complex-Oxide Thin Films and Heterostructures
95(9)
3.3.4 Photovoltaics
104(7)
3.4 Conclusion and Outlook
111(3)
References
114(13)
4 AFM Approaches to the Study of PDMS-Au and Carbon-Based Surfaces and Interfaces
127(22)
Giorgio Saverio Senesi
Alessandro Massaro
Angelo Galiano
Leonardo Pellicani
4.1 Introduction
127(3)
4.2 AFM Characterization of Micro-Nano Surfaces and Interfaces of Carbon-Based Materials and PDMS-Au Nano composites
130(6)
4.3 3D Image Processing: ImageJ Tools
136(2)
4.4 Scanning Capacitance Microscopy, Kelvin Probe Microscopy, and Electromagnetic Characterization
138(3)
4.5 AFM Artifacts
141(2)
4.6 Conclusions (General Guidelines for Material Characterization by AFM)
143(3)
Acknowledgments
146(1)
References
146(3)
5 One-Dimensional Silica Nanostructures and Metal-Silica Nanocomposites: Fabrication, Characterization, and Applications
149(56)
Francesco Ruffino
5.1 Introduction: The Weird World of Silica Nanowires and Metal-Silica Composite Nanowires
150(5)
5.2 Silica Nanowires: Fabrication Methodologies, Properties, and Applications
155(22)
5.2.1 Metal-Catalyzed Growth
158(16)
5.2.2 Oxide-Assisted Growth
174(3)
5.3 Metal NPs-Decorated Silica Nanowires: Fabrication Methodologies, Properties, and Applications
177(11)
5.4 Metal NPs Embedded in Silica Nanowires: Fabrication Methodologies, Properties, and Applications
188(9)
5.5 Conclusions: Open Points and Perspectives
197(1)
References
197(8)
6 Understanding the Basic Mechanisms Acting on Interfaces: Concrete Elements, Materials and Techniques
205(44)
Dimitra V. Achillopoulou
6.1 Summary
205(2)
6.2 Introduction
207(5)
6.3 Existing Knowledge on Force Transfer Mechanisms on Reinforced Concrete Interfaces
212(24)
6.3.1 Concrete Interfaces
212(5)
6.3.2 Reinforcement Effect on Concrete Interfaces
217(7)
6.3.3 Interfaces of Strengthened RC Structural Elements
224(12)
6.4 International Standards
236(5)
6.4.1 Fib Bulletin 2010
237(1)
6.4.2 ACI 318-08
238(1)
6.4.3 Greek Retrofit Code (Gre. Co.) Attuned to EN-1998/part 3
238(3)
6.5 Conclusions
241(1)
References
242(7)
7 Pressure-Sensitive Adhesives (PSA) Based on Silicone
249(28)
Adrian Krzysztof Antosik
Zbigniew Czech
7.1 Introduction
249(1)
7.2 Pressure-Sensitive Adhesives
250(3)
7.2.1 Goal of Cross-Linking
251(2)
7.3 Significant Properties of Pressure-Sensitive Adhesives
253(3)
7.3.1 Tack (Initial Adhesion)
253(1)
7.3.2 Peel Adhesion (Adhesion)
254(1)
7.3.3 Shear Strength (Cohesion)
255(1)
7.3.4 Shrinkage
255(1)
7.4 Silicone PSAs
256(16)
7.4.1 Properties
256(4)
7.4.2 Effect of Cross-LinkingAgent to the Basic Properties Si-PSA
260(7)
7.4.3 Application
267(5)
7.5 Conclusion
272(1)
References
273(4)
Part 2 Functional Interfaces: Fundamentals and Frontiers
8 Interfacing Gelatin with (Hydr)oxides and Metal Nanoparticles: Design of Advanced Hybrid Materials for Biomedical Engineering Applications
277(48)
Nathalie Steunou
8.1 Introduction
278(1)
8.2 Physical Gelation of Gelatin
279(3)
8.3 Synthesis of Gelatin-Based Hybrid Nanoparticles and Nanocomposites
282(12)
8.3.1 Preparation of Hybrid Composites by Gelification and Complex Coacervation
282(6)
8.3.2 Processing of Gelatin-Based Hybrid Materials into Monoliths, Films, Foams and Nanofibers
288(2)
8.3.3 Synthesis of Hybrid and Core-Shell Nanoparticles and Nano-Objects
290(4)
8.4 Characterization of Gelatin-Based Hybrid Nanoparticles and Nanocomposites
294(2)
8.5 Mechanical Properties of Gelatin-Based Hybrid Nanoparticles and Nanocomposites
296(6)
8.6 Design of Gelatin-Based Hybrid Nanoparticles for Drug Delivery
302(8)
8.7 Design of Nanostructured Gelatin-Based Hybrid Scaffolds for Tissue Engineering and Regeneration Applications
310(6)
8.8 Conclusions and Outlook
316(2)
References
318(7)
9 Implantable Materials for Local Drug Delivery in Bone Regeneration
325(54)
P. Diaz-Rodriguez
M. Landin
9.1 Bone Morphology
325(1)
9.2 Bone Fracture Healing Process
326(1)
9.3 Current Materials for Bone Regeneration
327(9)
9.3.1 Metals
329(1)
9.3.2 Ceramics
330(1)
9.3.2.1 Biodegradable Ceramics
330(1)
9.3.2.2 Non-Absorbable Ceramics
332(1)
9.3.3 Polymers
332(1)
9.3.3.1 Natural Polymers
333(1)
9.3.3.2 -Synthetic Polymers
334(1)
9.3.4 Composites
335(1)
9.4 Therapeutic Molecules with Interest in Bone Regeneration
336(7)
9.4.1 Antibiotics
337(2)
9.4.2 Growth Factors
339(1)
9.4.3 Bisphosphonates
340(1)
9.4.4 Corticosteroids
341(1)
9.4.5 Hormones
341(1)
9.4.6 Antitumoral Drugs
341(1)
9.4.7 Others
342(1)
9.5 Mechanism for Loading Drugs into Implant Materials and Release Kinetics
343(7)
9.5.1 Unspecific Adsorption
344(1)
9.5.2 Physical Interactions
345(3)
9.5.3 Physical Entrapment
348(2)
9.5.4 Chemical Immobilization
350(1)
9.6 In Vitro Drug Release Studies
350(5)
9.6.1 Drug Release Kinetic Analysis
354(1)
9.7 Translation to the Human Situation
355(1)
9.8 Conclusions (Future Perspectives)
356(1)
Acknowledgments
357(1)
References
357(22)
10 Interaction of Cells with Different Micrometer and Submicrometer Topographies
379(26)
M.V. Tuttolomondo
P.N. Catalano
M.G. Bellino
M.F. Desimone
10.1 Introduction
379(1)
10.2 Synthesis of Substrates with Controlled Topography
380(1)
10.3 Methods for Creating Micro- and Nanotopographical Features
381(1)
10.4 Litography
381(3)
10.4.1 Photolithography
381(1)
10.4.2 Electron-Beam Lithography
382(1)
10.4.3 Nanoimprint Lithography
383(1)
10.4.4 Soft Lithography
384(1)
10.5 Polymer Demixing
384(1)
10.6 Self-Assembly
385(1)
10.7 Cell Material Interactions
386(11)
10.7.1 Lithography Method
386(4)
10.7.2 Polymer Demixed
390(1)
10.7.3 Cell Behaviour onto EISA obtained films
390(5)
10.7.4 Biological Evidence
395(2)
10.8 Conclusions
397(2)
Acknowledgements
399(1)
References
399(6)
11 Nanomaterial-Live Cell Interface: Mechanism and Concern
405(22)
Arka Mukhopadhyay
Hirak K. Patra
11.1 Introduction
405(2)
11.2 Protein Destabilization
407(1)
11.3 Nanomaterials-Induced Oxidative Stress
408(7)
11.3.1 Transitional Metal-Oxide Nanomaterials and ROS
409(1)
11.3.2 Prooxidant Effects of Metal-Oxide Nanoparticles
409(3)
11.3.3 CNT-Induced ROS Formation
412(1)
11.3.3.1 CNT-Induced Inflammation and Genotoxicity and ROS
415(1)
11.4 Nucleic Acid Damage
415(3)
11.5 Damage to Membrane Integrity and Energy Transduction
418(1)
11.6 Conclusions
418(1)
References
419(8)
12 Bioresponsive Surfaces and Interfaces Fabricated by Innovative Laser Approaches
427(36)
F. Sima
E. Axente
C. Ristoscu
O. Gallet
K. Anselme
I.N. Mihailescu
12.1 Introduction
428(2)
12.2 Pulsed Laser Methods Applied for the Grown of Inorganic and Organic Coatings
430(4)
12.3 Combinatorial Laser Approaches: New Tool for the Fabrication of Compositional Libraries of Hybrid Coatings
434(3)
12.4 Thin Bioresponsive Coatings Synthesized by Lasers
437(15)
12.4.1 Bioactive Inorganic Coatings Obtained by PLD
438(1)
12.4.2 Bioactive Organic Coatings Obtained by MAPLE
439(1)
12.4.3 Bioactive Inorganic-Organic Coatings Obtained by Pulsed Laser Techniques
440(2)
12.4.4 Combinatorial Thin Coatings Libraries Synthesized by C-MAPLE
442(1)
12.4.4.1 Tailoring Cell Signaling Response by Compositional Gradient Bioactive Coatings
442(1)
12.4.4.2 Coatings for Protein Immobilization and Controlled Release
448(4)
12.5 Conclusion and Perspectives
452(1)
Acknowledgments
453(1)
References
453(10)
13 Polymeric and Non-Polymeric Platforms for Cell Sheet Detachment
463(34)
Ana Civantos
Enrique Martinez-Campos
Maria E. Nash
Alberto Gallardo
Viviana Ramos
Inmaculada Aranaz
13.1 Introduction
463(2)
13.2 The Extracellular Matrix
465(10)
13.3 Platforms for Cell Detachment
466(1)
13.3.1 Electroresponsive Platforms
466(1)
13.3.1.1 Electroactive Self-Assembled Monolayers
466(1)
13.3.1.2 Polyelectrolyte-Modified Surfaces
469(1)
13.3.2 Light-Induced Detachment
469(1)
13.3.2.1 Photosensitive Inorganic-Based Surfaces
469(1)
13.3.2.2 Photosensitive Organic-Based Surfaces
471(2)
13.3.3 pH-Sensitive Surfaces
473(2)
13.4 Degradable Platforms
475(12)
13.4.1 Other Detaching Systems
476(1)
13.4.2 Mechanical Platforms
476(3)
13.4.3 Magnetic Platforms
479(1)
13.4.4 Thermoresponsive Platforms
480(5)
13.4.5 Clinical Translation
485(2)
13.5 Conclusions
487(1)
References
487(10)
Index 497
Ashutosh Tiwari is Chairman and Managing Director of Tekidag AB; Group Leader, Advanced Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre at IFM, Linköping University; Editor-in-Chief, Advanced Materials Letters and Advanced Materials Reviews; Secretary General, International Association of Advanced Materials; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden. He has more than 400 publications in the field of materials science and nanotechnology with h-index of 30 and has edited/authored over 25 books on advanced materials and technology.

Hirak K Patra completed his PhD in 2007 on "Synthetic Nanoforms as Designer and Explorer for Cellular Events" at the University of Calcutta. He moved to the Applied Physics Division of Linköping University with the prestigious Integrative Regenerative Medicine fellowship at Sweden to work with the Prof. Anthony Turner at his Biosensors and Bioelectronics Center. He has published 17 articles in top journals, 4 patents, and has been honored with several Young Scientist awards globally.

Xiumei Wang is an Associate Professor of Biomaterials at Southeast University, China.