Muutke küpsiste eelistusi

E-raamat: Advanced Mathematical Applications in Data Science

Edited by , Edited by , Edited by
  • Formaat: 225 pages
  • Ilmumisaeg: 09-Feb-2000
  • Kirjastus: Bentham Science Publishers
  • Keel: eng
  • ISBN-13: 9789815124842
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 45,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 225 pages
  • Ilmumisaeg: 09-Feb-2000
  • Kirjastus: Bentham Science Publishers
  • Keel: eng
  • ISBN-13: 9789815124842
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses.Key Features:Comprehensive coverage of advanced mathematical concepts and techniques in data scienceContributions from established scientists, researchers, and academiciansReal-world case studies and practical applications of mathematical methodsFocus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysisIn-depth exploration of data science's connection with mathematics, computer science, and artificial intelligenceScholarly references for each chapterSuitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.