Muutke küpsiste eelistusi

E-raamat: Advanced Network Technologies and Intelligent Computing: Third International Conference, ANTIC 2023, Varanasi, India, December 20-22, 2023, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The 4-volume proceedings set CCIS 2090, 2091,2092 and 2093 constitute the refereed post-conference proceedings of the Third International Conference on Advanced Network Technologies and Intelligent Computing, ANTIC 2023, held in Varanasi, India, during December 20-22, 2023.





The 87 full papers and 11 short papers included in this book were carefully reviewed and selected from 487 submissions. The conference papers are organized in topical sections on: 





Part I - Advanced Network Technologies.





Part II - Advanced Network Technologies; Intelligent Computing.





Part III- IV - Intelligent Computing.
.- Intelligent Computing.

.- Implementation and Performance Evaluation of Deep Learning Models for
Disease Classification and Severity Estimation of Coffee Leaves.

.- Flow-Optimized Channel-Attentive Excitation DenseNet Algorithm for
Multi-Disease Classification and Severity Estimation.

.- Image Captioning using Deep Learning.

.- Visualizing Optimal Classifiers in EEG-Based Sleepy Driver Prediction.

.- Revolutionizing Glaucoma Diagnosis with a Hybrid AI Algorithm.

.- Unravelling Crop Yield Secrets Through Identification of Significant
Factors Using Machine Learning.

.- Comparative Analysis of Short-Term Load Forecasting Using K-Nearest
Neighbor, Random Forest, and Gradient Boost Models.

.- Heuristics for Influence Maximization with Tiered Influence and Activation
thresholds.

.- Sentiment Analysis and Offensive Language Identification In Code-Mixed
Tamil-English Languages Using Transformer-based Models.

.- Performance evaluation of Deep Transfer Learning and Semantic Segmentation
models for crop and weed detection in the Sesame Production System.

.- Machine Learning Analysis on Hate Speech against Asians.

.- Deep Transfer Learning for Enhanced Blackgram Disease Detection: A
Transfer Learning - Driven Approach.

.- Sustainable Natural Gas Price Forecasting with DEEPAR.

.- Whale Optimized Deep Learning Technique for Accurate Skin Cancer
Identification.

.- Multi-Domain Feature Extraction Methods for Classification of Human
Emotions from Electroencephalography (EEG) Signals.

.- Enhancing Speech Quality using Spectral Subtraction and Time-Frequency
Filtering.

.- Analyzing the performance of BERT for the sentiment classification task in
Bengali text.

.- Students Performance Prediction using Decision Tree Regressor.

.- A Comprehensive Analysis on Features and Performance Evaluation Metrics in
Audio-Visual Voice Conversion.

.- Time Series Analytic Models for Forecasting Vehicular Registration Volume
in the Indian Context.

.- Impact of Clinical Features on Disease Diagnosis using Knowledge Graph
Embedding and Machine Learning: a Detailed Analysis.

.- Advancements in Alzheimer's Disease Diagnosis: The MRI-CNN Synergy for
Early Detection.

.- Drinking Addiction Predictive Model Using Body  Characteristics Machine
Learning Approach.

.- An Ensemble of Machine Learning Models Utilizing Deep Convolutional
Features for Medical Image Classification.