Muutke küpsiste eelistusi

E-raamat: Advanced Optoelectronic Devices

  • Formaat: PDF+DRM
  • Sari: Springer Series in Photonics 1
  • Ilmumisaeg: 14-Mar-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662039045
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Series in Photonics 1
  • Ilmumisaeg: 14-Mar-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662039045

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Optoelectronics will undoubtedly playamajor role in the applied sciences of the next century. This is due to the fact that optoelectronics holds the key to future communication developments which require high data transmission rates and of a extremely large bandwidths. For example, an optical fiber having a diameter few micrometers has a bandwidth of 50 THz, where an impressive number of channels having high bit data rates can be simultaneously propagated. At present, optical data streams of 100 Gb/s are being tested for use in the near future. Optoelectronics has advanced considerably in the last few years. This is due to the fact that major developments in the area of semiconductors, such as hetero­ structures based on III-V compounds or mesoscopic structures at the nanometer scale such as quantum weHs, quantum wires and quantum dots, have found robust applications in the generation, modulation, detection and processing of light. Major developments in glass techniques have also dramaticaHy improved the performance of optoelectronic devices based on optical fibers. The optical fiber doped with rare-earth materials has aHowed the amplification of propagating light, compensating its own los ses and even generating coherent light in fiber lasers. The UV irradiation of fibers has been used to inscribe gratings of hundreds of nanometer size inside the fiber, generating a large class of devices used for modulation, wavelength selection and other applications.
Basic Concepts of Optoelectronic Devices
1(60)
Maxwell's Equations in Linear Media
1(4)
Maxwell's Equations in Linear and Inhomogeneous Media
1(3)
Relations Between the Transverse and Longitudinal Components of the Electromagnetic Field in a Translationally Invariant Medium
4(1)
Matrix Method for Electromagnetic Field Propagation in a Stratified Medium
5(4)
Modal Method for Electromagnetic Field Propagation in a Dielectric Waveguide
9(15)
Modes in Slab Waveguides
11(4)
Modes in a Step Index Fiber
15(5)
Modes in a Periodic Waveguide
20(2)
Modes in a Bent Step Profile Planar Waveguide
22(2)
Coupled Mode Method for Electromagnetic Field Propagation in Perturbed Waveguides
24(23)
The Directional Waveguide Coupler
26(3)
Bragg Reflectors
29(7)
Distributed Feedback Lasers and Lasers with Distributed Bragg Reflectors
36(3)
Index-Coupled Distributed Feedback Lasers with Reduced Spatial Hole Burning
39(2)
Mixed Coupled Distributed Feedback Lasers
41(3)
Tunable Distributed Feedback and Distributed Bragg Reflector Lasers
44(3)
Solutions of Maxwell's Equations in Nonlinear Media
47(10)
Optical Solitons
52(3)
Optical Solitons in Real Transmission Systems
55(1)
Stretched Pulses
56(1)
Materials
57(4)
Glasses
57(1)
Semiconductors
58(3)
Devices for Coherent Light Generation
61(118)
Mesoscopic Structures
61(6)
Analogy Between Electromagnetic and Quantum Wave Fields
67(4)
Lasers with Mesoscopic Structures as Active Media in Fabry-Perot Resonant Cavities
71(80)
Quantum Well Laser Configurations
83(7)
Strained Quantum Well Lasers
90(10)
Vertical Cavity Surface Emitting Lasers
100(15)
Surface Emitting Lasers
115(8)
DFB and DBR Quantum Well Lasers
123(3)
Quantum Wire and Quantum Dot Lasers
126(8)
Arrays of Lasers with Mesoscopic Media as Active Layers
134(3)
Quantum Well Lasers with Other Resonant Cavity Types
137(1)
Modified Fabry-Perot Cavities
138(1)
Microdisk Lasers
139(5)
Ring Quantum Well Lasers
144(4)
Quantum Well Lasers with Unstable Resonators
148(3)
Quantum Well Tunneling Lasers
151(13)
Hybrid Laser Designs Between Quantum Well Tunneling and Active Media Quantum Well Lasers
164(2)
Optical Fiber Lasers
166(13)
Doped Fibers for Optical Amplification
166(5)
Fiber Laser Configurations
171(4)
Fiber Laser Configurations for Optical Soliton Generation
175(4)
Modulators
179(58)
Quantum Well Modulators
179(29)
Modulators Based on the Quantum Confined Stark Effect
182(15)
Modulators Based on Exciton Effects in Coupled Quantum Wells
197(2)
Barrier-Reservoir and Quantum Well Electron Transfer Modulators
199(3)
Quantum Well Devices Based on the Enhancement of Interband Light Modulation Due to Intraband Transitions
202(3)
Nonlinear Resonant Quantum Well Modulators
205(2)
Quantum Wire and Quantum Dot Modulators
207(1)
Advanced Bulk Semiconductor Modulators
208(9)
Modulators Based on the Franz-Keldysh Effect
208(3)
Traveling Wave Modulators
211(6)
Modulators Based on the Variation of the Depletion Layer
217(4)
Grating Modulators
221(10)
Nonlinear Directional Couplers as Light Modulators
231(2)
Fiber Loop Modulators
233(2)
Other Modulator Types
235(2)
Photodetectors
237(58)
Photoconductors
237(4)
Photodiode Structures
241(54)
Advanced p-i-n and Avalanche Photodiodes
242(7)
Metal-Semiconductor-Metal Photodetectors
249(7)
Resonant Cavity Enhanced Photodetectors
256(4)
Wavelength Selective Photodetectors Based on Directional Couplers
260(3)
Resonant Tunneling Photodetectors
263(1)
Waveguide Photodetectors
264(4)
Traveling Wave Photodetectors
268(7)
Intersubband Quantum Well Photodetectors
275(20)
Optical Signal Multiplexing/Demultiplexing
295(40)
Wavelength Division Multiplexing/Demultiplexing Devices
295(28)
Passive WD-MUX/DMUX Devices
296(1)
Angular Dispersive WD-MUX/DMUX Devices
296(6)
WD-MUX/DMUX Using Fiber Bragg Gratings
302(2)
Interference and Absorption Filters
304(3)
Directional Couplers for WD-MUX/DMUX
307(7)
Active Devices for WD-MUX/DMUX
314(1)
Tunable Lasers for WDM
314(5)
Multiwavelength Lasers
319(4)
Time Division Multiplexing/Demultiplexing Devices
323(9)
Polarization Division Multiplexing/Demultiplexing Devices
332(3)
Optical Signal Processing Devices
335(56)
Characterization of Optical Pulses
335(3)
Optical Pulse Compression
338(4)
Optical Pulse Shaping
342(6)
Optical Interconnections/Data Input Systems
348(17)
Optical Memories
365(2)
Optical Devices for Logical Operations
367(13)
Optoelectronic Devices for Optical Neural Network Implementation
380(5)
Integrated Optoelectronic Devices for Implementation of Integral Transforms of Optical Signals
385(6)
References 391(30)
Index 421