Muutke küpsiste eelistusi

E-raamat: Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence

Edited by (University Politehnica of Bucharest, Romania), Series edited by (Dalhousie University), Edited by (anta Clara University, USA), Edited by (Washington State University, Pullman, WA, USA; University College Dublin, Ireland)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 166,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control

This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements.





Discusses detailed operating principles and diagrams, theory of modeling, control strategies and physical installations around the world of HVDC and FACTS systems Covers a wide range of Artificial Intelligence techniques that are successfully applied for many power system problems, from planning and monitoring to operation and control Each chapter is carefully edited, with drawings and illustrations that helps the reader to easily understand the principles of operation or application 

Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence is written for graduate students, researchers in transmission and distribution networks, and power system operation. This book also serves as a reference for professional software developers and practicing engineers.
Contributors xxi
Foreword xxiii
Acknowledgments xxv
Chapter 1 Introduction
1(10)
Mircea Eremia
Chen-Ching Liu
Abdel-Aty Edris
PART I HVDC TRANSMISSION
Mircea Eremia
Chapter 2 Power Semiconductor Devices For Hvdc and Facts Systems
11(24)
Remus Teodorescu
Mircea Eremia
2.1 Power Semiconductor Overview
12(9)
2.1.1 Not-Controllable Power Semiconductor Devices
13(1)
2.1.2 Semicontrollable Power Semiconductor Devices
13(4)
2.1.3 Fully Controllable Power Semiconductor Devices
17(1)
2.1.3.1 Gate Turn-Off Thyristor
18(1)
2.1.3.2 Integrated Gate-Commutated Thyristor
18(1)
2.1.3.3 Isolated Gate Bipolar Transistor
18(2)
2.1.4 Power Semiconductor Parameters
20(1)
2.1.4.1 Steady-State Parameters
20(1)
2.1.4.2 Switching Characteristics
20(1)
2.1.5 Future Power Semiconductor Devices
21(1)
2.2 Converter Types
21(2)
2.3 HVDC Evolution
23(7)
2.3.1 Line-Commutated HVDC Converters (LCC/CSC-HVDC)
24(2)
2.3.2 Capacitor-Commutated Converter (CCC-HVDC)
26(2)
2.3.3 Voltage Source Converter VSC-HVDC
28(1)
2.3.3.1 VSC-HVDC Based on Two-Level Conveners
29(1)
2.3.3.2 VSC-HVDC Based on Multilevel Converters
29(1)
2.3.3.3 Limitations of VSC Transmission
30(1)
2.4 FACTS Evolution
30(5)
References
33(2)
Chapter 3 Csc-Hvdc Transmission
35(90)
Mircea Eremia
Constantin Bulac
3.1 Structure and Configurations
35(12)
3.1.1 Structure of HVDC Links
35(5)
3.1.2 HVDC Configurations
40(7)
3.2 Converter Bridge Modeling
47(12)
3.2.1 Rectifier Equations
47(1)
3.2.1.1 Ideal Converter Bridge Operation
47(5)
3.2.1.2 Commutation Process or Overlap
52(4)
3.2.1.3 Equivalent Circuit of the Rectifier
56(1)
3.2.2 Inverter Equations
57(2)
3.3 Control of CSC-HVDC Transmission
59(19)
3.3.1 Equivalent Circuit and Control Characteristics
59(1)
3.3.1.1 Equivalent Circuit of DC Transmission Link
59(3)
3.3.1.2 Voltage-Current Characteristics
62(2)
3.3.2 HVDC Control Principles
64(1)
3.3.2.1 State Variables of a HVDC Link
64(1)
3.3.2.2 Basic Control Principles of the DC Voltage and DC Current
65(2)
3.3.2.3 Control Modes
67(2)
3.3.3 HVDC Control Strategies
69(1)
3.3.3.1 Rectifier Control Strategy
69(2)
3.3.3.2 Inverter Control Strategy
71(1)
3.3.4 Hierarchical Control of a HVDC Link
72(1)
3.3.4.1 Master Control
72(2)
3.3.4.2 Pole Control
74(4)
3.3.4.3 Firing (Valve) Control
78(1)
3.3.4.4 Telecommunications
78(1)
3.3.4.5 Measurement Transducers
78(1)
3.4 Reactive Power and Harmonics
78(13)
3.4.1 Reactive Power Requirements and Sources
78(5)
3.4.2 Harmonics and Filters
83(1)
3.4.2.1 The Source of AC Harmonic Currents
83(2)
3.4.2.2 The Effect of Y/Δ Transformation on AC Harmonic Current
85(1)
3.4.2.3 Higher Pulse Operation Using Multiple Bridges and Transformers
86(1)
3.4.2.4 Elimination of Harmonics
86(5)
3.5 Load Row in Mixed HVAC/HVDC-CSC Systems
91(5)
3.5.1 Steady-State Model
91(2)
3.5.1.1 The Extended Variables Method
93(1)
3.5.1.2 The Sequential Method
94(1)
3.5.1.3 The Eliminated Variables Method
94(2)
3.6 Interaction Between AC and DC Systems
96(5)
3.6.1 AC Systems Stabilization
96(1)
3.6.2 Influence of AC System Short-Circuit Ratio
96(3)
3.6.3 Effective Inertia Constant
99(1)
3.6.4 Reactive Power and the Strength of the AC System
100(1)
3.7 Comparison Between DC and AC Transmission
101(8)
3.8 Application on a CSC--HVDC Link
109(16)
3.8.1 Solution
111(7)
Appendix 3.1 CSC--HVDC Systems in the World
118(5)
References
123(2)
Chapter 4 Vsc--Hvdc Transmission
125(146)
Mircea Eremia
Jose Antonio Jardini
Guangfu Tang
Lucian Toma
4.1 VSC Converter Structures
126(25)
4.1.1 Half-Bridge VSC or Two-Level Pole
126(2)
4.1.2 Full-Bridge Single-Phase VSC
128(1)
4.1.3 Three-Phase Two-Level VSC
128(1)
4.1.4 Three-Level Pole VSC
129(2)
4.1.5 Multimodule VSC Systems
131(1)
4.1.6 Multilevel VSC Systems
132(6)
4.1.7 Modular Multilevel Converter
138(2)
4.1.7.1 Half-Bridge Modular Multilevel Converter
140(3)
4.1.7.2 Full-Bridge Modular Multilevel Converter
143(1)
4.1.7.3 The MMC--HVDC INELFE Project
144(3)
4.1.8 Cascaded Two-Level Converters
147(4)
4.2 Modulation Techniques
151(15)
4.2.1 PWM Techniques
151(1)
4.2.1.1 PWM Principle
151(4)
4.2.1.2 PWM Strategy Control of a Half-Bridge Converter
155(4)
4.2.1.3 Three-Phase Bridge Inverter with Sinusoidal PWM
159(4)
4.2.2 Modulation Techniques for Multilevel Converters
163(1)
4.2.2.1 PWM Algorithms for Multilevel Converters
163(2)
4.2.2.2 Space Vector Modulation Algorithms
165(1)
4.2.2.3 Other Modulation and Control Algorithms for Multilevel Converters
165(1)
4.3 DC/AC Converter Analysis
166(22)
4.3.1 Operation Modes of the Switched-Inductor Cell
166(2)
4.3.2 Ideal DC/AC Half-Bridge Converter
168(7)
4.3.3 Averaging Models
175(1)
4.3.3.1 Circuit/Switch Averaging of DC-DC Converters
176(1)
4.3.3.2 State-Space Averaging of DC-DC Converters
177(1)
4.3.3.3 AVM of DC--AC Converters
178(2)
4.3.4 Detailed and Averaged Models for MMC--HVDC Systems
180(1)
4.3.4.1 Detailed Equivalent Models
181(2)
4.3.4.2 AVM of MMC--HVDC Using Voltage- and Current-Controlled Sources
183(5)
4.4 VSC Transmission Scheme and Operation
188(15)
4.4.1 Power Equipment
188(4)
4.4.2 Principles of Active and Reactive Power Control
192(4)
4.4.3 VSC Transmission Control
196(1)
4.4.3.1 VSC Converter Control Using the Vector Control Strategy
196(3)
4.4.3.2 Levels of Control
199(1)
4.4.3.3 Coordination of Controls
200(3)
4.5 Multiterminal VSC--HVDC Systems and HVDC Grids
203(1)
4.5.1 On the Conventional Multiterminal HVDC Configurations
203(1)
4.5.2 Multiterminal HVDC Grid Configurations
204(17)
4.5.3 Meshed HVDC Grid Configurations
209(2)
4.5.4 Need for Fast and Low Loss HVDC Breakers
211(1)
4.5.4.1 Preconditions
211(1)
4.5.4.2 Schemes for the Current Zero Formation
212(2)
4.5.4.3 Types of DC Circuit Breakers
214(4)
4.5.5 HVDC Grid Protection
218(3)
4.6 Load Flow and Stability Analysis
221(25)
4.6.1 Load Flow in Meshed AC/DC Grids
221(1)
4.6.1.1 Generalities
221(2)
4.6.1.2 Load Flow Calculation in a DC Grid
223(4)
4.6.1.3 Application
227(4)
4.6.2 Dynamic Stability in Meshed AC/DC Grids
231(1)
4.6.2.1 Generalities
231(2)
4.6.2.2 Description of the VSC Model for Stability Analysis
233(2)
4.6.2.3 Control Models
235(2)
4.6.2.4 P--V Droop Control
237(1)
4.6.2.5 Current and Voltage Limits
237(1)
4.6.2.6 RMS Model Testing
238(1)
4.6.2.7 Simulations on an AC/DC Meshed Grid
239(7)
4.7 Comparison of CSC--HVDC Versus VSC--HVDC Transmission
246(3)
4.7.1 Differences Resulting from the Commutation Principle
246(2)
4.7.2 Differences Resulting from the Converter Type
248(1)
4.8 Forward to Supergrid
249(22)
4.8.1 Challenges and Solutions for Developing Supergrid
249(1)
4.8.1.1 Connecting Renewable Energy Sources and Increased Transmission System Capacity
250(1)
4.8.1.2 Compensating Reactive Power
250(2)
4.8.1.3 Maintaining System Stability
252(1)
4.8.2 Hybrid AC and DC Systems
252(2)
4.8.3 Supermodes
254(1)
4.8.4 Stepwise Development of the European Supergrid
255(3)
4.8.5 Steps Toward a Planetary Supergrid
258(2)
4.8.6 VSC Multiterminal in China
260(1)
Appendix 4.1 VSC--HVDC Projects Around the World
261(2)
Appendix 4.2 Examples of VSC--HVDC One-Line Diagrams
263(1)
References
263(8)
PART II FACTS TECHNOLOGIES
Abdel-Aty Edris
Mircea Eremia
Chapter 5 Static Var Compensator (Svc)
271(68)
Mircea Eremia
Aniruddha Gole
Lucian Toma
5.1 Generalities
271(2)
5.2 Thyristor-Controlled Reactor
273(11)
5.3 Thyristor-Switched Capacitor
284(3)
5.4 Configurations of SVC
287(7)
5.4.1 Fixed Capacitor and Thyristor-Controlled Reactor
287(2)
5.4.2 The SVC Device (TSC--TCR)
289(1)
5.4.2.1 V--I Characteristics
289(1)
5.4.2.2 Operating Domain
290(4)
5.5 Control of SVC Operation
294(2)
5.5.1 The Voltage Regulator
294(2)
5.5.2 Gate Pulse Generator
296(1)
5.6 SVC Modeling
296
5.6.1 Steady-State SVC Modeling
296(1)
5.6.1.1 Modeling of an SVC That Operates Within or Outside the Linear Control Domain
297(2)
5.6.1.2 Improved Models for SVC Representation
299(6)
5.6.1.3 Newton-Raphson Modified Algorithm to Include the SVCs
305(2)
5.6.2 SVC Dynamic Modeling
307(1)
5.6.2.1 The Basic Dynamic Model
307(1)
5.6.2.2 First-Order Dynamic Model
308(1)
5.6.2.3 Complex SVC Dynamic Models
309(3)
5.7 Placement of SVC
312(2)
5.8 Applications of SVC
314(10)
5.8.1 Maintaining the Voltage Level of a Bus or into an Area
315(1)
5.8.2 Increasing the Transmission Capacity
315(2)
5.8.3 Static and Transient Stability Reserve Improvement
317(5)
5.8.4 Oscillations Damping
322(1)
5.8.5 Reducing the Transient Overvoltages
323(1)
5.9 SVC Installations Worldwide
324(15)
5.9.1 SVC at Hagby, in Sweden
326(1)
5.9.2 SVC at Forbes, in United States
327(1)
5.9.3 SVC in Temascal, Mexico
328(1)
5.9.4 Complex Compensation Scheme in Argentina
329(1)
5.9.5 SVC in the 735 kV Transmission System in Canada
329(1)
5.9.6 SVC at Auas, in Namibia
330(3)
5.9.7 SVC at the Channel Tunnel Rail Link
333(1)
5.9.8 SVC at Harker, in United Kingdom
334(2)
5.9.9 Relocatable SVCs
336(1)
References
337(2)
Chapter 6 Series Capacittve Compensation
339(70)
Mircea Eremia
Stig Nilsson
6.1 Generalities
339(1)
6.2 Mechanical Commutation-Based Series Devices
339(3)
6.3 Static-Controlled Series Capacitive Compensation
342(23)
6.3.1 GTO-Controlled Series Capacitor
342(3)
6.3.2 Thyristor-Switched Series Capacitor
345(3)
6.3.3 Thyristor-Controlled Series Capacitor
348(1)
6.3.3.1 Basic Structure
349(2)
6.3.3.2 Operating Principles of TCSC. Steady-State Approach and Synchronous Voltage Reversal
351(6)
6.3.3.3 Operation Modes and the Characteristics of the TCSC
357(5)
6.3.3.4 Capability Characteristics of the TCSC
362(3)
6.4 Control Schemes for the TCSC
365(5)
6.4.1 Open Loop Impedance Control
365(1)
6.4.2 Closed Loop Control
366(4)
6.5 TCSC Modeling
370(12)
6.5.1 Steady-State Modeling of TCSC
370(1)
6.5.1.1 TCSC Modeling Through Series Variable Impedance
370(4)
6.5.1.2 TCSC Impedance Modeling as a Function of the Firing Angle
374(2)
6.5.2 TCSC Dynamic Models
376(1)
6.5.2.1 Transient Stability Model
376(3)
6.5.2.2 Long-Term Stability Model
379(3)
6.6 Applications of TSSC/TCSC Installations
382(5)
6.7 Series Capacitors Worldwide
387(22)
6.7.1 Kanawha River Mechanically Switched Series Capacitor in United States
387(2)
6.7.2 Kayenta TCSC in United States
389(3)
6.7.3 Slatt TCSC in United States
392(4)
6.7.4 Stode TCSC in Sweden
396(1)
6.7.5 Imperatriz-Serra da Mesa TCSC in Brazil
397(3)
6.7.6 Purnea and Gorakhpur TCSC/FSC in India
400(2)
6.7.7 Series-Compensated 500 kV Power Transmission Corridors in Argentina
402(2)
Appendix 6.1 TCSC Systems Around the World
404(1)
References
405(4)
Chapter 7 Phase Shifting Transformer: Mechanical and Static Devices
409(50)
Mylavarapu Ramamoorty
Lucian Toma
7.1 Introduction
409(1)
7.2 Mechanical Phase Shifting Transformer
410(18)
7.2.1 Principle of Operation of the PST
410(2)
7.2.2 PST Topology
412(1)
7.2.2.1 Direct-Type Asymmetrical PSTs
412(2)
7.2.2.2 Direct-Type Symmetrical PSTs
414(2)
7.2.2.3 Indirect-Type Asymmetrical and Symmetrical PSTs
416(1)
7.2.2.4 Comparison of the Topologies
417(1)
7.2.3 Steady-State Model of a Mechanical Phase Shifter
418(2)
7.2.4 Equivalent Series Reactance as a Function of the Phase Shift Angle
420(1)
7.2.4.1 Symmetrical Phase Shifter
420(4)
7.2.4.2 Quadrature Booster
424(1)
7.2.4.3 Asymmetrical Phase Shifter
425(1)
7.2.4.4 In-Phase Transformer and Symmetrical/Asymmetrical Phase Shifter
426(2)
7.3 Thyristor-Controlled Phase Shifting Transformer
428(11)
7.3.1 Configurations of the Static Phase Shifter
428(1)
7.3.1.1 Substitution of Mechanical Tap Changer by Electronic Switches
429(1)
7.3.1.2 Thyristor-Controlled Quadrature Voltage Injection
429(3)
7.3.1.3 Pulse-Width Modulation AC Controller
432(1)
7.3.1.4 Delay-Angle Controlled AC-AC Bridge Converter
433(1)
7.3.1.5 Discrete-Step Controlled AC-AC Bridge Converter
434(1)
7.3.1.6 PWM Voltage Source Converter
434(2)
7.3.2 Modeling of TCPST
436(1)
7.3.2.1 Model of a Transmission System with a TCPST
436(1)
7.3.2.2 Line Model with Thyristor-Controlled Phase Angle Regulator
437(2)
7.3.2.3 The Dynamic Model of the Phase Shifter
439(1)
7.4 Applications of the Phase Shifting Transformers
439(11)
7.4.1 Power Flow Control by Phase Angle Regulators
440(2)
7.4.2 Real and Reactive Loop Power Flow Control
442(2)
7.4.3 Improvement of Transient Stability with PST
444(2)
7.4.4 Power Oscillation Damping with PST
446(2)
7.4.4.1 Application to Damp Power Oscillations
448(2)
7.5 Phase Shifting Transformer Projects Around the World
450(9)
References
456(3)
Chapter 8 Static Synchronous Compensator -- Statcom
459(68)
Rafael Mihalic
Mircea Eremia
Bostjan Blazic
8.1 Principles and Topologies of Voltage Source Converter
459(14)
8.1.1 Basic Considerations
459(5)
8.1.2 Converter Topologies
464(1)
8.1.2.1 Two-Level Topologies
464(5)
8.1.2.2 Multilevel Topologies
469(2)
8.1.2.3 PWM Converter
471(1)
8.1.3 Switching Function
472(1)
8.2 STATCOM Operation
473(3)
8.3 STATCOM Modeling
476(30)
8.3.1 STATCOM Model for Steady-State Analysis
476(2)
8.3.1.1 Basic Load Flow Equations
478(2)
8.3.1.2 The Single-Phase Voltage-Based Model
480(2)
8.3.1.3 The Single-Phase Current-Based Model
482(2)
8.3.1.4 Three-Phase Voltage-Based Model
484(3)
8.3.1.5 Three-Phase Current-Based Model
487(5)
8.3.2 Dynamic Models of STATCOM
492(1)
8.3.2.1 Simplified Dynamic Model
492(2)
8.3.2.2 Detailed Dynamic Model
494(5)
8.3.3 Control Algorithm
499(2)
8.3.4 STATCOM Model for Unbalanced Operation
501(5)
8.4 STATCOM Applications
506(9)
8.4.1 Fast Voltage Control and Maintaining Voltage Levels of a Bus or an Area
506(1)
8.4.2 Flicker Compensation
506(3)
8.4.3 Improvement of the Network Transmission Capability
509(3)
8.4.4 Improvement of Static and Transient Stability Reserve
512(2)
8.4.5 Oscillations Damping
514(1)
8.5 STATCOM Installations in Operation
515(12)
8.5.1 ± 80 MVAr STATCOM in Japan
515(1)
8.5.2 ± 100 MVAr STATCOM at Sullivan, in United States
516(4)
8.5.3 +225/-52 MVAr TSC and STATCOM Mixed System at East Claydon, in Great Britain
520(1)
8.5.4 +133/-41 MVAr STATCOM at Essex, in United States
520(1)
8.5.5 STATCOM (+80/-110 MVAr) and Mechanic-Switched Capacitor (-93 MVAr) Mixed System, at Holly, in United States
521(1)
8.5.6 ± 100 MVAr STATCOM at Talega, in United States
522(2)
References
524(3)
Chapter 9 Static Synchronous Series Compensator (SSSC)
527(32)
Laszlo Gyugyi
Abded-Aty Edris
Mircea Eremia
9.1 Introduction
527(1)
9.2 Architecture and Operating Principles
528(5)
9.2.1 The Basic Structure and Principles of Operation
528(2)
9.2.2 Operating Modes of SSSC
530(2)
9.2.3 The Pq-δ Characteristic of SSSC
532(1)
9.3 Comparison of SSSC with Other Technologies
533(7)
9.3.1 Comparison with Fixed Series Capacitor
533(1)
9.3.2 Comparison with Fixed Series Reactor
534(1)
9.3.3 Comparison with Phase Angle Regulator
534(1)
9.3.4 Comparison with Thyristor-Controlled Series Capacitor
535(3)
9.3.5 Comparison with Gate-Controlled Series Capacitor
538(2)
9.3.6 Dynamic Flow Controller
540(1)
9.4 Components of an SSSC
540(6)
9.4.1 Overview of the Functional SSSC Components
540(2)
9.4.2 Control
542(3)
9.4.3 Protection
545(1)
9.5 SSSC Modeling
546(5)
9.5.1 Steady-State SSSC Model
546(1)
9.5.1.1 VSC Controller Load Flow Models
546(1)
9.5.1.2 Newton-Raphson Load Flow Solution
547(2)
9.5.2 SSSC Dynamic Model
549(2)
9.6 Applications
551(1)
9.7 SSSC Installation
552(7)
9.7.1 SSSC in Operation
552(1)
9.7.2 SSSC for Power Flow Control: A Project in Spain
553(1)
9.7.2.1 Project Overview
553(1)
9.7.2.2 Components of the SSSC
554(1)
9.7.2.3 Location Selection for Prototype Installation
555(1)
References
556(3)
Chapter 10 Unified Power Flow Controller (UPFC)
559(70)
Laszlo Gyugyi
10.1 Introduction
559(8)
10.1.1 UPFC as the Functional Combination of Conventional Transmission Controllers
559(7)
10.1.2 UPFC Directly Providing Line Current Forcing Function
566(1)
10.2 Basic Characteristics of the UPFC
567(4)
10.3 UPFC Versus Conventional Power Flow Controllers
571(4)
10.3.1 UPFC versus Series Reactive Compensators
571(2)
10.3.2 UPFC versus Phase Shifters
573(2)
10.4 UPFC Control System
575(9)
10.4.1 Functional Control of the Shunt Converter
578(1)
10.4.2 Functional Control of the Series Converter
579(1)
10.4.3 Stand-Alone Shunt and Series Compensation
580(1)
10.4.4 Basic Control Structure for the Series and Shunt Converters
580(3)
10.4.5 Practical Control Considerations
583(1)
10.5 Equipment Structural and Rating Considerations
584(12)
10.5.1 Circuit Structural Considerations
586(2)
10.5.2 Rating Considerations for Series and Shunt Converters
588(1)
10.5.2.1 Series Converter Rating to Meet Line Compensation Requirements
588(4)
10.5.2.2 Shunt Converter Rating to Meet UPFC Operation Requirements
592(2)
10.5.3 UPFC Rating Optimization by Combined Compensation
594(2)
10.6 Protection Considerations
596(1)
10.6.1 Protection of the Series Converter
596(4)
10.6.2 Protection of the Shunt Converter
600(1)
10.7 Application Example: UPFC at AEP's INEZ Station
600(13)
10.7.1 Background and Planning Information at the Time of Installation
601(2)
10.7.2 UPFC Operation Strategy
603(1)
10.7.3 Description of the UPFC
604(3)
10.7.4 Performance of the UPFC
607(6)
10.7.5 Importance of Results and Possible Future Trends
613(1)
10.8 Modeling of the UPFC Device
613(16)
10.8.1 The Steady-State Model of UPFC
613(3)
10.8.2 Power Flow and Active Power Balance Restrictions
616(2)
10.8.3 Implementing the UPFC Model in the Newton-Raphson Method
618(5)
10.8.4 The Dynamic Model of UPFC
623(4)
References
627(2)
Chapter 11 Interline Power Flow Controller (IPFC)
629(22)
Laszlo Gyugyi
11.1 Generalities
629(1)
11.2 Basic Operating Principles and Characteristics of the IPFC
630(6)
11.3 Generalized Interline Power Flow Controller for Multiline Systems
636(2)
11.4 Basic Control System
638(2)
11.5 Equipment Structural and Rating Considerations
640(2)
11.6 Protection Considerations
642(1)
11.7 Application Example: IPFC at NYPA's Marcy Substation
643(8)
11.7.1 Background Information, System, and Equipment Requirements
643(1)
11.7.2 Description of the CSC/IPFC
644(1)
11.7.3 Importance of the NYPA Installation
645(4)
References
649(2)
Chapter 12 Sen Transformer: A Power Regulating Transformer
651(134)
Kalyan K. Sen
12.1 Background
651(5)
12.1.1 Traditional Power Flow Controllers
652(3)
12.1.2 Essential Control Parameters and Their Implementations
655(1)
12.2 The Sen Transformer Concept
656(107)
12.2.1 Shunt-Series Configuration for ST
657(1)
12.2.2 Principle of Operation of ST
658(103)
16.5.2 Unsupervised ICA Learning Objectives
761(1)
16.5.2.1 Off-Line ICA Learning
762(1)
16.5.2.2 On-Line (Adaptive) ICA Learning
762(1)
16.6 Examples of Neural Network Applications for Power System Monitoring and Control
763(22)
16.6.1 On-Line Estimation of Electric Power System Active Loads
763(4)
16.6.2 Harmonic Source Identification Using Off-Line ICA
767(2)
16.6.3 ICA-Based Harmonic Source Identification Case Study
769(3)
16.6.4 Wind Speed Forecasting
772(1)
16.6.5 Optimal Control of Grid Independent Photovoltaic System
773(3)
16.6.6 Adaptive Neurocontrol of a FACTS Device: The Unified Power Flow Controller
776(4)
16.6.7 Wide-Area Monitoring and Control
780(1)
References
781(4)
Chapter 17 Fuzzy Systems
785(34)
Germano Lambert-Torres
Luiz Eduardo Borges da Silva
Carlos Henrique Valerio de Moraes
Yvo Marcelo Chiaradia Masselli
17.1 Introduction
785(2)
17.2 Fundamental Notions
787(10)
17.2.1 Classical Sets
787(1)
17.2.2 Fuzzy Sets
788(1)
17.2.2.1 Operations on Fuzzy Sets
788(1)
17.2.2.2 Properties of Fuzzy Sets
789(1)
17.2.3 Linguistic Values
790(3)
17.2.4 Fuzzy Statements
793(1)
17.2.5 Fuzzy Conditional Statements
793(3)
17.2.6 Ordinary and Fuzzy Relations
796(1)
17.3 Fuzzy Logic
797(4)
17.3.1 Fuzzy Control
798(1)
17.3.2 Fuzzy Controller
799(2)
17.3.3 Fuzzy Inference Process
801(1)
17.4 Fuzzy Model
801(10)
17.4.1 Problem Formulation
802(1)
17.4.2 The Algorithm to Solve for the Vector 0
802(2)
17.4.3 A Multiple Input/Output Decision System
804(3)
17.4.4 Illustrative Example
807(4)
17.5 An Application of Fuzzy Logic in Control System
811(5)
17.5.1 Control Strategy
813(1)
17.5.2 Production System
814(2)
17.6 Final Remarks
816(3)
Acknowledgments
817(1)
References
817(2)
Chapter 18 Decision Trees
819(26)
Constantin Bulac
Adrian Bulac
18.1 Introduction
819(1)
18.2 Decision Trees
820(9)
18.2.1 Decision Tree Construction
821(3)
18.2.2 Decision Tree Pruning
824(1)
18.2.2.1 Reduced Error Pruning
825(1)
18.2.2.2 Pessimistic Error Pruning
826(1)
18.2.2.3 Minimum Error Pruning
827(1)
18.2.2.4 Critical Value Pruning
827(1)
18.2.2.5 Cost-Complexity Pruning
828(1)
18.2.2.6 Error-Based Pruning
829(1)
18.3 Oblique Decision Trees
829(4)
18.3.1 Recursive Least Squares Procedure
830(1)
18.3.2 The Thermal Training Procedure
831(1)
18.3.3 OC1 Algorithm
831(2)
18.4 Applications of Decision Trees in Power Systems
833(3)
18.5 Case Study
836(9)
References
843(2)
Chapter 19 Genetic Algorithms
845(58)
Anastasios Bakirtzis
Spyros Kazarlis
19.1 Introduction to Evolutionary Computation
845(14)
19.1.1 Taxonomy
846(1)
19.1.2 Initial Inspiration and Basic Principles
846(2)
19.1.3 On the Evolution Theory
848(1)
19.1.4 DNA-Like Solution Encoding
849(2)
19.1.5 Solution Evaluation
851(1)
19.1.6 Genetic Information Recombination
852(1)
19.1.7 The Circle of Evolution
853(1)
19.1.8 Evolutionary Algorithms as Global Optimizers
853(1)
19.1.9 Evolutionary Computation Paradigms
854(3)
19.1.10 Application Areas
857(1)
19.1.11 Advantages and Disadvantages
858(1)
19.2 Genetic Algorithms
859(38)
19.2.1 Basic GA Principles
860(2)
19.2.2 GA Flow Diagram
862(1)
19.2.3 Solution Encoding
863(6)
19.2.4 Fitness Function
869(1)
19.2.5 Parent Selection Methods
870(3)
19.2.6 Basic Genetic Operators
873(1)
19.2.6.1 The Crossover Operator
873(4)
19.2.6.2 Mutation
877(1)
19.2.7 Elitism
878(1)
19.2.8 Other Genetic Operators
879(1)
19.2.9 Hill-Climbing Operators
880(3)
19.2.10 Parent Replacement Methods
883(1)
19.2.11 Fitness Scaling
884(3)
19.2.12 GA Control Parameters Determination
887(1)
19.2.13 Niche and Species
888(5)
19.2.14 Diversity Enhancement
893(1)
19.2.15 Constrained Optimization with GAs
894(3)
19.3 On The Optimal Location and Operation of FACTS Devices by Genetic Algorithms
897(6)
References
898(5)
Chapter 20 Multiagent Systems
903(28)
Nan-Peng Yu
Chen-Ching Liu
20.1 Overview
903(6)
20.1.1 What is an Agent? What is a Multiagent System?
903(1)
20.1.2 Why Multiagent Systems?
904(1)
20.1.3 Applications of Multiagent Technology
904(1)
20.1.3.1 Industrial Applications
905(1)
20.1.3.2 Commercial Applications
906(1)
20.1.3.3 Medical Applications
907(1)
20.1.3.4 Entertainment Applications
907(1)
20.1.4 Challenges and Future of Multiagent Technology
908(1)
20.1.4.1 Design Methodologies for Software Development of Agent-Based Systems
908(1)
20.1.4.2 Ensure User Confidence and Trust in Agent-Based Systems
908(1)
20.1.4.3 Enable Agent Adaptation in Artificial System
908(1)
20.1.4.4 Promote Interoperability in an Open Environment
909(1)
20.1.4.5 Develop Semantic Infrastructure and Common Ontology for Agent Communication and Information Management
909(1)
20.1.4.6 Enhance Reasoning Capabilities for Agents in Open Environment
909(1)
20.2 Multiagent Technology Overview
909(8)
20.2.1 Architectures for Intelligent Agents
909(1)
20.2.1.1 Logic-Based Architectures
910(1)
20.2.1.2 Reactive Architectures
910(1)
20.2.1.3 Belief-Desire-Intention Architectures
911(1)
20.2.1.4 Layered (Hybrid) Architectures
911(1)
20.2.2 Multiagent Systems and Societies of Agents
912(1)
20.2.2.1 Communication
912(1)
20.2.2.2 Negotiation
913(1)
20.2.2.3 Coordination
913(1)
20.2.3 Programming Languages, Tools, and Frameworks for Multiagent Systems
914(1)
20.2.3.1 Programming Languages for Multiagent Systems
914(1)
20.2.3.2 Integrated Development Environment
915(1)
20.2.3.3 Frameworks for Multiagent Systems Development
915(1)
20.2.4 Multiagent System-Related Standards
915(1)
20.2.4.1 The Foundation for Intelligent Physical Agents
915(2)
20.2.4.2 The Object Management Group
917(1)
20.3 Applications of Multiagent Systems in Power Engineering
917(3)
20.3.1 Modeling and Simulation
917(1)
20.3.2 Monitoring and Diagnostics
918(1)
20.3.3 Restoration and Reconfiguration
919(1)
20.3.4 Distributed Control
919(1)
20.4 Electricity Markets Modeling and Simulation with Multiagent Systems
920(11)
20.4.1 Why Multiagent System?
921(1)
20.4.2 Literature on Multiagent-Based Modeling of Electricity Markets
921(1)
20.4.3 Multiagent System Design for Electricity Market Modeling and Simulation
922(1)
20.4.3.1 Purpose
922(1)
20.4.3.2 MAS Structure
923(1)
20.4.3.3 Agents
924(3)
References
927(4)
Chapter 21 Heuristic Optimization Techniques
931(54)
Kwang Y. Lee
Malihe M. Farsangi
Jong-Bae Park
John G. Vlachogiannis
21.1 Introduction
931(1)
21.2 Evolutionary Algorithms for Reactive Power Planning
932(11)
21.2.1 Evolutionary Algorithms
932(1)
21.2.1.1 Evolutionary Programming
932(1)
21.2.1.2 Evolutionary Strategy
933(1)
21.2.1.3 Genetic Algorithm
934(1)
21.2.2 Optimal Reactive Power Planning Problem
935(1)
21.2.2.1 Objective Functions
935(1)
21.2.2.2 P--Q Decomposition
936(1)
21.2.3 Case Studies
937(6)
21.3 Genetic Algorithm for Generation Planning
943(8)
21.3.1 Generation Expansion Planning Problem
943(2)
21.3.2 Improved GA for the Least-Cost GEP
945(1)
21.3.2.1 Overview of Genetic Algorithm
945(1)
21.3.2.2 String Structure
945(1)
21.3.2.3 Fitness Function
945(1)
21.3.2.4 Creation of an Artificial Initial Population
946(1)
21.3.2.5 Stochastic Crossover, Elitism, and Mutation
947(1)
21.3.3 Case Studies
948(1)
21.3.3.1 Test Systems Description
948(1)
21.3.3.2 Parameters for GEP and IGA
949(1)
21.3.3.3 Numerical Results
950(1)
21.4 Particle Swarm Optimization for Economic Dispatch
951(10)
21.4.1 Formulation of Economic Dispatch Problem
952(1)
21.4.1.1 ED Problem with Smooth Cost Functions
952(2)
21.4.2 Implementation of PSO for ED Problems
954(1)
21.4.2.1 Overview of the PSO
954(1)
21.4.2.2 Modified PSO for ED Problems
955(3)
21.4.2.3 Case Studies
958(1)
21.4.2.4 ED Problem with Smooth Cost Functions
959(1)
21.4.2.5 ED Problem with Nonsmooth Cost Functions Considering Valve-Point Effects
959(2)
21.5 Ant Colony System for Constrained Load Flow Problem
961(7)
21.5.1 Formulation of Constrained Load Flow Problem
961(1)
21.5.2 Development of Ant Colony System for the Constrained Load Flow Problem
962(3)
21.5.3 Results
965(3)
21.6 Immune Algorithm for Damping of Interarea Oscillation
968(6)
21.6.1 Study System and Problem Formulation
969(2)
21.6.2 Designing of Supplementary Controller
971(3)
21.7 Simulated Annealing and Tabu Search for Optimal Allocation of Static VAr Compensators
974(6)
21.7.1 Voltage Stability Analysis
974(1)
21.7.2 Simulated Annealing
975(1)
21.7.3 Tabu Search
975(1)
21.7.4 Study System and Optimal Allocation of SVCs
976(1)
21.7.4.1 A 5-Area-16-Machine System
976(1)
21.7.4.2 Optimal Allocation of SVCs
976(4)
21.8 Conclusions
980(5)
References
981(4)
Chapter 22 Unsupervised Learning and Hybrid Methods
985(48)
Nikos Hatziargyriou
Manolis Voumvoulakis
22.1 Generalities
985(3)
22.2 Supervised Learning Methods
988(8)
22.2.1 Decision Trees
988(2)
22.2.2 Neuro-Fuzzy Decision Trees
990(2)
22.2.3 Radial Basis Function Neural Networks
992(4)
22.3 Unsupervised Learning Methods
996(4)
22.3.1 Self-Organized Maps
996(4)
22.4 Som Variants
1000(7)
22.4.1 Evolving SOM
1001(1)
22.4.2 Growing Hierarchical Self-Organized Map
1002(2)
22.4.3 Growing Neural Gas
1004(2)
22.4.4 Variable Local Topology-Self-Organized Map
1006(1)
22.5 Combined Use of Unsupervised with Supervised Learning Methods
1007(1)
22.6 Applications to Power Systems
1007(26)
22.6.1 Description of the Power System
1007(2)
22.6.1.1 RBFNN for DSA
1009(1)
22.6.1.2 Decision Trees for DSA
1010(1)
22.6.1.3 Decision Trees Application for Load Shedding
1011(1)
22.6.1.4 Genetic Algorithm Aided DTs for Load Shedding
1012(1)
22.6.1.5 Neuro-Fuzzy Decision Trees for DSA
1013(1)
22.6.1.6 SOM Application for Load Shedding
1014(2)
22.6.1.7 Decision Trees Aided SOM for Load Shedding
1016(2)
22.6.2 Preventive Security Control
1018(1)
22.6.2.1 Study Case System
1019(1)
22.6.2.2 Decision Trees for Security Constrained Economic Dispatch
1020(2)
22.6.3 Power System-Controlled Islanding
1022(5)
22.6.3.1 Application of the Method on the IEEE 30 Bus Test System
1027(1)
22.6.3.2 Application of the Method on the IEEE 118 Bus Test System
1028(2)
References
1030(3)
Index 1033
MIRCEA EREMIA is Professor Emeritus in the Electrical Power Systems Department of the University Politehnica of Bucharest, Romania. Dr. Eremia is author and co-author of over 180 journals and conference papers as well as 11 books in power systems. He was an active member of IEEE and CIGRE by participating in various working groups related to applications of power electronics and artificial intelligence techniques. In 2013, Dr. Eremia and Mohammad Shahidehpour published The Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control with the Wiley-IEEE press.

CHEN-CHING LIU is Boeing Distinguished Professor of Electrical Engineering at Washington State University, Pullman, WA, USA, and Visiting Professor of University College Dublin, Ireland, in the School of Mechanical and Materials Engineering. He obtained his Bachelor of Science and Master of Science degrees, both in electrical engineering, from National Taiwan University, Taiwan, in 1976 and 1978, and a PhD degree from the University of California, Berkeley, USA.

ABDEL-ATY EDRIS is the Senior Manager at Exponent Failure Analysis Associates and Adjunct Professor at Santa Clara University, USA. He received his BS from Cairo University, MS from Ain-Shams University, and PhD from Chalmers University of Technology. Dr. Edris is a leading expert in the design and operation of FACTS devices. He is the recipient of the IEEE 2006 FACTS Award, the IEEE 2008 Outstanding Engineer Award, and many other awards.