|
|
ix | |
|
|
xiii | |
Foreword |
|
xv | |
|
Foreword |
|
xvii | |
|
Preface |
|
xix | |
About the Author |
|
xxi | |
|
|
1 | (48) |
|
|
1 | (1) |
|
1.2 Compliant offshore platforms |
|
|
2 | (3) |
|
1.3 New-generation offshore platforms |
|
|
5 | (4) |
|
1.3.1 Buoyant leg structures |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.3.3 Buoyant leg storage regasification platform |
|
|
7 | (2) |
|
1.4 Design of stiffened cylindrical shell structures |
|
|
9 | (6) |
|
1.5 Unsymmetrical bending |
|
|
15 | (17) |
|
|
32 | (9) |
|
1.6.1 Bending of curved beams with small initial curvature |
|
|
33 | (2) |
|
1.6.2 Deflection of the curved beam with small initial curvature |
|
|
35 | (1) |
|
1.6.3 Curved beam with large initial curvature |
|
|
36 | (5) |
|
1.6.4 Simplified equations to estimate stresses in the extreme fiber |
|
|
41 | (1) |
|
|
41 | (8) |
|
Chapter 2 Plastic Design of Structures |
|
|
49 | (40) |
|
2.1 Plastic Behavior of Structures |
|
|
49 | (5) |
|
|
54 | (4) |
|
2.2.1 Rectangular Section |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
57 | (1) |
|
2.3 MATLAB® Code for Calculating Shape Factor |
|
|
58 | (5) |
|
2.4 Moment Curvature Relationship |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (2) |
|
|
68 | (1) |
|
2.9 Exercises to Estimates Collapse Load |
|
|
68 | (6) |
|
2.9.1 Fixed Beam with a Central Point Load |
|
|
68 | (2) |
|
2.9.2 Fixed Beam with Uniformly Distributed Load |
|
|
70 | (1) |
|
2.9.3 Simply Supported Beam with Eccentric Load |
|
|
71 | (2) |
|
2.9.4 Simply Supported Beam with a Central Point Load |
|
|
73 | (1) |
|
2.10 Advantages and Disadvantages of Plastic Analysis |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
2.11 Comparison of Elastic and Plastic Analysis |
|
|
74 | (1) |
|
|
75 | (14) |
|
Chapter 3 Blast, Fire, and Impact-Resistant Design |
|
|
89 | (44) |
|
|
89 | (1) |
|
3.2 Blast-Resistant Design |
|
|
89 | (2) |
|
|
90 | (1) |
|
3.2.2 Controlled Shutdown |
|
|
90 | (1) |
|
3.2.3 Financial Consideration |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
3.4 Classification of Explosions |
|
|
92 | (2) |
|
3.4.1 Vapour Cloud Explosions |
|
|
92 | (1) |
|
3.4.2 Pressure Vessel Explosions |
|
|
93 | (1) |
|
3.4.3 Condensed Phase Explosion |
|
|
94 | (1) |
|
|
94 | (1) |
|
3.5 Blast Wave Parameters |
|
|
94 | (5) |
|
3.5.1 Peak Reflected Pressure |
|
|
96 | (1) |
|
3.5.2 Peak Dynamic Pressure |
|
|
97 | (1) |
|
3.5.3 Shock Front Velocity |
|
|
97 | (1) |
|
|
97 | (2) |
|
3.6 Design Blast Load for Buildings |
|
|
99 | (5) |
|
|
99 | (1) |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
3.6.6 Negative Pressure, Leakage Pressure and Rebound Load |
|
|
104 | (1) |
|
3.7 Design Example: Computation of Blast Overpressure for a Rectangular-Shaped Building |
|
|
104 | (4) |
|
|
108 | (1) |
|
3.9 Categorization of Fire |
|
|
109 | (1) |
|
3.10 Characteristics of Fire |
|
|
110 | (1) |
|
3.10.1 Auto-Ignition Temperature |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (1) |
|
3.11 Classification of Fire |
|
|
111 | (2) |
|
3.12 Fire Protection Systems in the Design |
|
|
113 | (1) |
|
3.13 Steel at High Temperature |
|
|
114 | (2) |
|
3.14 Example Case Study: Behavior of an Offshore Deck Plate Under Hydrocarbon Fire |
|
|
116 | (3) |
|
|
119 | (1) |
|
|
119 | (1) |
|
3.15.2 Linear Elastic Method |
|
|
119 | (1) |
|
3.15.3 Elastic-Plastic Method |
|
|
119 | (1) |
|
3.16 Impact Loads Due to Ship-Platform Collision |
|
|
120 | (2) |
|
|
121 | (1) |
|
|
122 | (2) |
|
3.18 An Example Problem on Ship Collision |
|
|
124 | (1) |
|
3.19 Impact Analysis of Buoyant Legs of Offshore Triceratops |
|
|
124 | (5) |
|
3.20 Functionally Graded Material |
|
|
129 | (4) |
|
3.20.1 Material Characteristics of FGM |
|
|
132 | (1) |
|
Chapter 4 Stability of Structural Systems |
|
|
133 | (98) |
|
4.1 Conditions of Stability |
|
|
133 | (1) |
|
4.2 Buckling and Instability |
|
|
134 | (5) |
|
|
139 | (2) |
|
4.4 Standard Beam Element, Neglecting Axial Deformation |
|
|
141 | (9) |
|
4.4.1 Rotational Coefficients |
|
|
147 | (3) |
|
|
150 | (9) |
|
4.5.1 Rotation Functions Under Axial Compressive Load |
|
|
150 | (4) |
|
4.5.2 Rotation Functions Under Zero Axial Load (Special Case) |
|
|
154 | (1) |
|
4.5.3 Rotation Functions Under Axial Tensile Load |
|
|
155 | (1) |
|
4.5.4 Translation Function Under Axial Compressive Load |
|
|
156 | (3) |
|
4.6 Lateral Load Functions Under Uniformly Distributed Load |
|
|
159 | (4) |
|
4.7 Fixed Beam Under Tensile Axial Load |
|
|
163 | (1) |
|
4.8 Lateral Load Functions for Concentrated Load |
|
|
164 | (4) |
|
4.9 Exercise Problems on Stability Analysis |
|
|
168 | (33) |
|
4.10 Critical Buckling Load |
|
|
201 | (30) |
|
Chapter 5 Mathieu Stability of Compliant Structures |
|
|
231 | (34) |
|
|
231 | (1) |
|
|
231 | (2) |
|
|
233 | (1) |
|
5.4 Mathieu Stability for Compliant Structures |
|
|
234 | (1) |
|
5.5 Mathieu Stability of Triceratops |
|
|
235 | (4) |
|
5.5.1 Formulation of Mathieu Equation |
|
|
236 | (2) |
|
|
238 | (1) |
|
5.6 Influence of Parameters on Stability |
|
|
239 | (9) |
|
5.6.1 Influence of Wave Height |
|
|
239 | (3) |
|
5.6.2 Influence of Wave Period |
|
|
242 | (1) |
|
5.6.3 Influence of Water Depth |
|
|
243 | (2) |
|
5.6.4 Influence of Tether Stiffness |
|
|
245 | (1) |
|
5.6.5 Influence of Increased Payload |
|
|
246 | (2) |
|
5.7 Mathieu Stability of BLSRP |
|
|
248 | (10) |
|
|
248 | (2) |
|
5.7.2 Mathieu Stability Under Tether Pullout |
|
|
250 | (5) |
|
5.7.3 Mathieu Stability Analysis Under Eccentric Loading |
|
|
255 | (3) |
|
5.8 Numerical Modeling Example of Triceratops |
|
|
258 | (5) |
|
5.8.1 Typical Plots of Members Showing Instability |
|
|
263 | (1) |
|
5.9 Numerical Model of BLSRP |
|
|
263 | (2) |
References |
|
265 | (12) |
Index |
|
277 | |