Muutke küpsiste eelistusi

E-raamat: Advancements in Intelligent Gas Metal Arc Welding Systems: Fundamentals and Applications

(Professor of Welding Technology, Department of Engineering Science, University West Trollhattan, Sweden)
  • Formaat - PDF+DRM
  • Hind: 238,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advancements in Intelligent Gas Metal Arc Welding Systems: Fundamentals and Applications presents the latest on gas metal arc welding which plays a significant role in modern manufacturing industries and accounts for about 70% of welding processes. The importance of advancements in GMAW cannot be underestimated as they can lead to more efficient production strategies, resource savings and quality improvements. This book provides an overview of various aspects associated with GMAW, starting from the theoretical basis and ending with characteristics of industrial applications and control methods. Additional sections cover processes associated with welding and welding control, such as fuzzy logic, artificial neural networks, and others.
  • Provides an up-to-date overview of recent GMAW developments
  • Includes insights into intelligent welding automation
  • Describes real-world, industrial cases of welding automation implementation

Arvustused

"A well written book packed with valuable information and very well illustrated. The work updates previous publications on this subject and enhances the recognition of digital process control in GMAW.... This book brings together a summary of the currently available technology and is a convenient reference for end users and students." --John Norrish, Emeritus Professor, University of Wollongong

List of abbreviations and symbols
xiii
Preface xvii
Acknowledgments xix
Introduction xxi
1 Gas metal arc welding
1(104)
1.1 Principles of operation
1(2)
1.2 GMAW process variables
3(23)
1.2.1 Welding current
5(1)
1.2.2 Polarity of power supply
6(1)
1.2.3 Arc voltage
7(1)
1.2.4 Welding speed
7(1)
1.2.5 Electrode extension
7(1)
1.2.6 Electrode orientation
8(1)
1.2.7 Electrode diameter
8(1)
1.2.8 Shielding gas
9(17)
1.3 Metal transfer characteristics
26(4)
1.3.1 Short circuit metal transfer
27(1)
1.3.2 Globular transfer
27(1)
1.3.3 Axial spray transfer
28(1)
1.3.4 Pulsed spray transfer
29(1)
1.4 Developments in GMAW
30(8)
1.4.1 Pulsed-gas metal arc welding
32(2)
1.4.2 Cold metal transfer
34(1)
1.4.3 Double electrode gas metal arc welding
35(1)
1.4.4 Tandem gas metal arc welding
36(1)
1.4.5 Alternating current gas metal arc welding
37(1)
1.5 Advanced control and variations of GMAW processes
38(63)
1.5.1 Emerging arc welding techniques
39(1)
1.5.2 Power source evolution
40(2)
1.5.3 Regulation of the process
42(5)
1.5.4 Advanced power source regulation GMAW short circuit
47(9)
1.5.5 Pulse waveform
56(26)
1.5.6 Mechanically assisted droplet transfer
82(7)
1.5.7 Variable polarity AC-MIG
89(6)
1.5.8 Combined or mixed metal transfer mode
95(6)
1.6 Weld quality and defects
101(4)
2 Robotic GMAW
105(16)
2.1 Developments in robotic welding systems
107(1)
2.2 Robotic motion capabilities
107(1)
2.3 Welding robotic manipulator
108(2)
2.4 Welding positioner
110(4)
2.5 Phases of welding operations
114(1)
2.5.1 Preparation phase
114(1)
2.5.2 Welding phase
114(1)
2.5.3 Analysis phase
115(1)
2.6 Robotic GMAW programming
115(3)
2.6.1 Online GMAW programming
116(1)
2.6.2 Offline GMAW programming
117(1)
2.7 Benefits of robotic GMAW
118(1)
2.8 Problems in robotic GMAW
118(3)
3 Sensors in robotic GMAW
121(44)
3.1 Types of sensors
121(22)
3.1.1 Technological sensors
121(3)
3.1.2 Geometrical sensors
124(8)
3.1.3 Summary of sensors
132(1)
3.1.4 Image processing in robotic welding
132(11)
3.2 Need for sensors in robotic GMAW
143(11)
3.2.1 Seam finding
145(1)
3.2.2 Seam tracking
145(3)
3.2.3 Adaptive control
148(2)
3.2.4 Quality monitoring
150(4)
3.3 Desirable features of weld sensors
154(1)
3.4 Considerations for selection of an appropriate sensor solution
155(2)
3.5 Commercial seam tracking and seam finding sensors
157(8)
3.5.1 Robo-find (Servo-Robot)
157(1)
3.5.2 Power Trac (Servo-Robot)
158(1)
3.5.3 Laser pilot (Meta Vision)
159(1)
3.5.4 Oxford sensor technology: circular scanning system welding sensor
160(1)
3.5.5 ABB Weld Guide III
161(4)
4 Control of GMAW
165(116)
4.1 Conventional control
170(2)
4.2 Adaptive control
172(2)
4.3 Intelligent control
174(19)
4.3.1 Fuzzy logic
175(4)
4.3.2 Artificial neural network
179(11)
4.3.3 Knowledge-based and/or expert system
190(1)
4.3.4 Hybrid or combined models
191(2)
4.4 Control of process variables
193(27)
4.4.1 Joint profile and trajectory
193(1)
4.4.2 Arc length
194(2)
4.4.3 Mass and heat transfer
196(1)
4.4.4 Weld temperature and/or cooling rate
196(1)
4.4.5 Weld pool and geometry
197(2)
4.4.6 Droplet transfer frequency
199(1)
4.4.7 Weld penetration
199(1)
4.4.8 Microstructure quality
200(1)
4.4.9 Current and waveform
200(4)
4.4.10 Waveforms parameters
204(7)
4.4.11 Modified short circuit
211(9)
4.5 Adaptive and intelligent control applications in GMAW
220(53)
4.5.1 Case I: autonomous transport robotic welding
222(2)
4.5.2 Case II: automatic visual-based welding robot for SME
224(4)
4.5.3 Case III: prediction of weld geometry using BPN
228(5)
4.5.4 Case IV: robust vision system for monitoring arc position
233(6)
4.5.5 Case V: variable precision rough set modeling for robotic welding process
239(5)
4.5.6 Case VI: prediction of weld qualify through ANN software
244(1)
4.5.7 Case VII: combined intelligent and sensing of welder and robot
244(3)
4.5.8 Case VIII: weld quality monitoring and control using NDT
247(4)
4.5.9 Case IX: suitability of ANN for industrial welding
251(15)
4.5.10 Case X: suitability of ANN for fillet welds in industrial welding
266(7)
4.6 Physics-based models of GMAW
273(8)
5 Advancement in intelligent GMAW
281(28)
5.1 Developments in welding monitoring systems
281(6)
5.1.1 Welding as a complex process
282(1)
5.1.2 Weld data sensing
283(1)
5.1.3 Weld data management
283(4)
5.2 Intelligent GMAW control
287(10)
5.2.1 Learning methods and definitions
288(1)
5.2.2 Seam tracking and workpiece misalignment control
289(2)
5.2.3 Penetration control
291(3)
5.2.4 Bead width, height, and shape control
294(2)
5.2.5 Tack weld control
296(1)
5.3 Welding process contribution toward effective manufacturing
297(9)
5.3.1 Development of welding power sources
297(7)
5.3.2 Characteristics of smart power source systems
304(2)
5.4 Future trends in intelligent welding systems
306(3)
6 Joining of thin sheet metals section/foil
309(18)
6.1 Thin sheet metals
309(1)
6.2 Stress on thin section
310(4)
6.3 Joint types
314(2)
6.4 Welding process application welding peculiarities
316(4)
6.4.1 Welding peculiarities
316(4)
6.5 Applications in industry
320(1)
6.6 Distortion
321(4)
6.7 Conclusion
325(2)
7 Narrow gap welding of thick sections
327(14)
7.1 Groove preparations
328(2)
7.2 Advantages and disadvantages
330(1)
7.3 GMAW variants
331(2)
7.4 Case studies
333(8)
7.4.1 Pulsed tandem narrow gap GMAW
333(2)
7.4.2 Stainless steels welding by hybrid laser MIG welding
335(1)
7.4.3 Ultranarrow gap welding of thick section of austenitic stainless steel to HSLA steel
336(5)
8 GMAW of various materials in industry
341(12)
8.1 Power plant and process industries
341(2)
8.2 Aerospace industry
343(3)
8.3 Oil and gas industry
346(1)
8.4 Shipbuilding industry
347(1)
8.5 Offshore industry
347(2)
8.6 Automotive industry
349(2)
8.7 Mining industry
351(2)
9 Welding safety and training
353(10)
9.1 Fume formation mechanism
354(2)
9.2 Fume emission control
356(5)
9.2.1 Integrated fume extraction torches
358(1)
9.2.2 Exhaust ventilations systems
358(2)
9.2.3 Personal protective equipment
360(1)
9.3 Personnel training
361(2)
10 Summary
363(4)
References 367(26)
Index 393
Paul Kah is currently working as a professor in welding technology at the Department of Engineering Science, University West, Trollhättan, Sweden. Professor Kah's research focuses on welding technology and, more specifically, process control systems for optimization of arc welding processes for improved weld quality. Additional research interests include research in the application of artificial intelligence systems in gas metal arc processes as a way to meet welding challenges and improve systems integration, welding economy and quality, the weldability of high-strength steels, and aluminium and dissimilar welds. His scientific activity includes being a coordinator and researcher in academic scientific and industrial projects in research, technology transfer and education funded by national and international authorities. Prof Kah has established scientific collaborations with many universities in Africa, the EU and China. Prof. Kah has a large number of publications, which include more than a hundred scientific articles in Scopus and Web of Knowledge and other articles in peer-reviewed conference proceedings. Prof. Kah is a delegate in the International Institute of Welding (IIW) Commission XII and reviewer of the journal Welding in the World. Prof. Kah is the President of the Cameroon Welding Association, a member country of the International Institute of Welding IIW.