Muutke küpsiste eelistusi

E-raamat: Advancements in Knowledge Distillation: Towards New Horizons of Intelligent Systems

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 222,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book provides a timely coverage of the paradigm of knowledge distillation—an efficient way of model compression. Knowledge distillation is positioned in a general setting of transfer learning, which effectively learns a lightweight student model from a large teacher model. The book covers a variety of training schemes, teacher–student architectures, and distillation algorithms. The book covers a wealth of topics including recent developments in vision and language learning, relational architectures, multi-task learning, and representative applications to image processing, computer vision, edge intelligence, and autonomous systems. The book is of relevance to a broad audience including researchers and practitioners active in the area of machine learning and pursuing fundamental and applied research in the area of advanced learning paradigms.

Categories of Response-Based, Feature-Based, and Relation-Based Knowledge Distillation.- A Geometric Perspective on Feature-Based Distillation.- Knowledge Distillation Across Vision and Language.- Knowledge Distillation in Granular Fuzzy Models by Solving Fuzzy Relation Equations.- Ensemble Knowledge Distillation for Edge Intelligence in Medical Applications.- Self-Distillation with the New Paradigm in Multi-Task Learning.- Knowledge Distillation for Autonomous Intelligent Unmanned System.