Muutke küpsiste eelistusi

E-raamat: Advances in Analytics and Applications

  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book includes selected papers submitted to the ICADABAI-2017 conference, offering an overview of the new methodologies and presenting innovative applications that are of interest to both academicians and practitioners working in the area of analytics. It discusses predictive analytics applications, machine learning applications, human resource analytics, operations analytics, analytics in finance, methodology and econometric applications. The papers in the predictive analytics applications section discuss web analytics, email marketing, customer churn prediction, retail analytics and sports analytics. The section on machine learning applications then examines healthcare analytics, insurance analytics and machine analytics using different innovative machine learning techniques. Human resource analytics addresses important issues relating to talent acquisition and employability using analytics, while a paper in the section on operations analytics describe an innovative application in oil and gas industry. The papers in the analytics in finance part discuss the use of analytical tools in banking and commodity markets, and lastly the econometric applications part presents interesting banking and insurance applications.

Part I Brief Overviews
Machine Learning: An Introduction
3(10)
Sayan Putatunda
Linear Regression for Predictive Analytics
13(8)
Amab Kumar Laha
Directional Data Analysis
21(10)
K. C. Mahesh
Branching Processes
31(14)
Sumit Kumar Yadav
Part II Predictive Analytics Applications
Click-Through Rate Estimation Using CHAD) Classification Tree Model
45(14)
Rajan Gupta
Saibal K. Pal
Predicting Success Probability in Professional Tennis Tournaments Using a Logistic Regression Model
59(8)
Saurabh Srivastava
Hausdorff Path Clustering and Hidden Markov Model Applied to Person Movement Prediction in Retail Spaces
67(10)
Francisco Romaldo Mendes
Improving Email Marketing Campaign Success Rate Using Personalization
77(8)
Gyanendra Singh
Himanshu Singh
Sonika Shriwastav
Predicting Customer Churn for DTH: Building Churn Score Card for DTH
85(20)
Ankit Goenka
Chandan Chintu
Gyanendra Singh
Applying Predictive Analytics in a Continuous Process Industry
105(14)
Nitin Merh
Part III Machine Learning Applications
Automatic Detection of Tuberculosis Using Deep Learning Methods
119(12)
Manoj Raju
Aran Aswath
Amrit Kadam
Venkatesh Pagidimarri
Connected Cars and Driving Pattern: An Analytical Approach to Risk-Based Insurance
131(10)
Srinivasa Rao Vallum
Part IV Human Resource Analytics
Analytics-Led Talent Acquisition for Improving Efficiency and Effectiveness
141(20)
Girish Keshav Palshikar
Rajiv Srivastava
Sachin Pawar
Swapnil Hingmire
Ankita Jain
Saheb Chourasia
Mahek Shah
Assessing Student Employability to Help Recruiters Find the Right Candidates
161(16)
Saksham Agrawal
Part V Operations Analytics
Estimation of Fluid Flow Rate and Mixture Composition
177(12)
Pradyumn Singh
G. Karthikeyan
Mark Shapiro
Shiyuan Gu
Bill Roberts
Part VI Analytics in Finance
Loan Loss Provisioning Practices in Indian Banks
189(14)
Divya Gupta
Sunita Mall
Modeling Commodity Market Returns: The Challenge of Leptokurtic Distributions
203(24)
Arnab Kumar Laha
A. C. Pravida Raja
Part VII Methodology
OLS: Is That So Useless for Regression with Categorical Data?
227(16)
Atanu Biswas
Samarjit Das
Soumyadeep Das
Estimation of Parameters of Misclassified Size Biased Borel Tanner Distribution
243(18)
B. S. Trivedi
M. N. Patel
A Stochastic Feedback Queuing Model with Encouraged Arrivals and Retention of Impatient Customers
261(14)
Bhupender Kumar Som
Part VIII Econometric Applications
Banking Competition and Banking Stability in SEM Countries: The Causal Nexus
275
Manju Jayakumar
Rudra P. Pradhan
Debaleena Chatterjee
Ajoy K. Sarangi
Saurav Dash
Prof. Arnab K Laha takes keen interest in understanding how analytics, machine learning and artificial intelligence can be leveraged to solve complex problems of business and society.  His areas of research and teaching interest include Advanced Data Analytics, Quality Management and Risk Modeling.  He has published papers in national and international journals of repute in these areas and has served on the editorial board of several journals including Statistical Analysis and Data Mining: The ASA Data Science Journal. He was featured among Indias best business school professors by Business Today in 2006 and Business India in 2012 and was named as one of the 10 Most Prominent Analytics Academicians in India by Analytics India Magazine in 2014 and 2017. He is the convener of the biennial IIMA series of conferences on Advanced Data Analysis, Business Analytics and Intelligence. He is the author of the popular book on analytics entitled "How to Make the Right Decision" published by Penguin-Random House.  He has conducted large number of training programmes and undertaken consultancy work in the fields of business analytics, quality management and risk management.