Muutke küpsiste eelistusi

E-raamat: Advances in Artificial Pancreas Systems: Adaptive and Multivariable Predictive Control

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This brief introduces recursive modeling techniques that take account of variations in blood glucose concentration within and between individuals. It describes their use in developing multivariable models in early-warning systems for hypo- and hyperglycemia; these models are more accurate than those solely reliant on glucose and insulin concentrations because they can accommodate other relevant influences like physical activity, stress and sleep.

Such factors also contribute to the accuracy of the adaptive control systems present in the artificial pancreas which is the focus of the brief, as their presence is indicated before they have an apparent effect on the glucose concentration and so can be more easily compensated. The adaptive controller is based on generalized predictive control techniques and also includes rules for changing controller parameters or structure based on the values of physiological variables. Simulation studies and clinical studies are reported to illustrate the performance of the techniques presented.
1 Introduction
1(8)
1.1 Diabetes
1(1)
1.2 History of Diabetes
2(1)
1.3 Artificial Pancreas
3(6)
2 Components of an Artificial Pancreas System
9(14)
2.1 Glucose Sensors
10(4)
2.2 Sensors for Physiological (Biometric) Variables
14(3)
2.3 Insulin Pumps
17(3)
2.4 Controllers
20(3)
3 Factors Affecting Blood Glucose Concentration and Challenges to AP Systems
23(10)
3.1 Meals
24(1)
3.2 Exercise and Physical Activities
25(2)
3.3 Psychological Stress
27(1)
3.4 Sleep
28(1)
3.5 Hypoglycemia
29(1)
3.6 Insulin
29(1)
3.7 Glucagon
30(1)
3.8 Glucose Sensor Signal Accuracy and Delay
31(2)
4 Modeling Glucose and Insulin Concentration Dynamics
33(18)
4.1 Physiological Models
33(4)
4.2 Time Series Models and System Identification
37(11)
4.2.1 Experiment Planning for Data Collection
38(1)
4.2.2 Selection of Model Structure
38(3)
4.2.3 Model Performance Criteria
41(1)
4.2.4 Parameter Estimation
41(4)
4.2.5 Model Analysis
45(3)
4.3 Recursive Time Series Models
48(1)
4.4 State-Space Models
49(2)
5 Alarm Systems
51(4)
6 Various Control Philosophies for AP Systems
55(10)
6.1 Proportional-Integral-Derivative Control
55(1)
6.2 Model Predictive Control
56(3)
6.3 Adaptive Control
59(2)
6.4 Knowledge-Based Fuzzy Logic Control
61(4)
7 Multivariable Control of Glucose Concentration
65(18)
7.1 Recursive Model of Glucose Concentration Dynamics
66(4)
7.2 Hypoglycemia Detection and Carbohydrate Suggestion
70(1)
7.3 Meal Detection and Hyperglycemia Prevention
71(3)
7.4 Physical Activity
74(4)
7.5 Acute Psychological Stress
78(2)
7.6 Sleep
80(1)
7.7 Multivariable Adaptive Control
80(3)
8 Dual-Hormone (Insulin and Glucagon) AP Systems
83(6)
9 Fault Detection and Data Reconciliation
89(8)
9.1 Sensor Error Detection and Data Reconciliation
90(4)
9.2 Controller Performance Assessment and Retuning
94(3)
10 Clinical AP Studies
97(4)
11 Future Developments
101(4)
References 105
 Ali Cinar is Professor of Chemical Engineering at the Illinois Institute of Technology.  His research concentrates on three areas: modeling, simulation and control of biomedical systems, complex adaptive agent-based systems, and supervision of process operations. His research activities focus on the development of theory, methods, and tools to use in these application areas. He is a Fellow of the AIChE and the author of books on batch fermentation and chemical process performance evaluation.    







Kamuran Turksoy is a postdoctoral researcher in biomedical engineering at IIT.  His research focuses on the development of hypoglycemia early alarm systems, multivariable adaptive control systems and process monitoring, performance assessment, and fault diagnosis techniques for risk mitigation in artificial pancreas systems. He has developed software to implement the methods and algorithms developed, and tested them in simulation and clinical studies.