Muutke küpsiste eelistusi

E-raamat: Advances in Biological Science Research: A Practical Approach

Edited by (Department of Microbiology, Gao University, Gao, India), Edited by (DSK PDF at Department of Chemistry, Savitribai Phule Pune University, Pune, India)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-May-2019
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128174982
  • Formaat - EPUB+DRM
  • Hind: 156,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-May-2019
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128174982

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advances in Biological Science Research: A Practical Approach provides discussions on diverse research topics and methods in the biological sciences in a single platform. This book provides the latest technologies, advanced methods, and untapped research areas involved in diverse fields of biological science research such as bioinformatics, proteomics, microbiology, medicinal chemistry, and marine science. Each chapter is written by renowned researchers in their respective fields of biosciences and includes future advancements in life science research.

  • Discusses various research topics and methods in the biological sciences in a single platform
  • Comprises the latest updates in advanced research techniques, protocols, and methods in biological sciences
  • Incorporates the fundamentals, advanced instruments, and applications of life science experiments
  • Offers troubleshooting for many common problems faced while performing research experiments
Contributors xxi
Preface xxv
Acknowledgments xxix
1 Bioinformatics methods: application toward analyses and interpretation of experimental data
Shyamalina Haldar
1.1 Aim of the chapter
1(1)
1.2 DNA sequencing
1(1)
1.3 Identification of organisms from nucleotide sequence
2(5)
1.3.1 What is BLAST?
2(1)
1.3.2 Methods for nucleotide BLAST
2(2)
1.3.3 Interpretation of BLAST results
4(1)
1.3.4 Construction and interpretation of phylogenetic tree
5(1)
1.3.5 Sequence deposition
6(1)
1.4 Microbial ecology statistics
7(6)
1.4.1 Species composition/species richness
7(1)
1.4.2 Species abundance
7(3)
1.4.3 Species diversity
10(3)
1.5 Biostatistics
13(4)
1.5.1 Sampling statistics
14(1)
1.5.2 Testing of hypothesis
15(1)
1.5.3 Probability distribution
15(2)
1.6 Advanced bioinformatics tools in biological sciences
17(1)
1.6.1 Sequence analysis
17(1)
1.6.2 Phylogenetic analysis
17(1)
1.6.3 Sequence databases
18(1)
1.7 Conclusion
18(1)
References
18(3)
2 Genome sequence analysis for bioprospecting of marine bacterial polysaccharide-degrading enzymes
Md Imran
Sanjeev C. Ghadi
2.1 Introduction
21(1)
2.2 Marine polysaccharides and polysaccharide-degrading bacteria: an overview
22(1)
2.3 Identification of polysaccharide-degrading genes through genome annotation
23(4)
2.4 Identification of polysaccharide-degrading genes in newly sequenced bacterial genome: a guide for beginners
27(1)
2.5 Genome sequence analysis unravels organization of polysaccharide-degrading genes as polysaccharide utilization loci
28(1)
2.6 Genome annotation: a potential tool for the elucidation of glycometabolism pathways
28(1)
2.7 CAZy database: a promising tool for the classification of polysaccharide-degrading genes/enzymes identified in newly sequenced genomes
29(1)
2.8 Validation of computationally identified polysaccharide-degrading genes in the genomes of marine bacteria
30(1)
Acknowledgments
30(1)
References
30(5)
3 Proteomics analysis of Mycobacterium cells: challenges and progress
Suvidha Samant
Abhishek Mishra
3.1 Introduction
35(2)
3.2 Proteome analysis of axenic mycobacteria
37(2)
3.3 Proteome analysis of mycobacteria-infected cells
39(1)
3.4 Proteome analysis of mycobacteria-containing host vacuoles
39(1)
3.5 Conclusion
40(1)
References
41(4)
4 Plant proteomics: a guide to improve the proteome coverage
Chhaya Patole
Laurence V. Bindschedler
4.1 Introduction
45(1)
4.2 Hurdles associated with plant proteins sample preparation for mass spectrometry-based proteomics
46(1)
4.3 Primary considerations to design suitable workflows for plant proteomics
46(15)
4.3.1 Effective protein sample preparation: extraction and recovery from difficult plant samples
50(3)
4.3.2 Contaminant removal from or during protein digestion
53(1)
4.3.3 Overcoming the high-dynamic range of protein concentrations for the discovery of low-abundant proteins
54(4)
4.3.4 Digestion of plant proteins
58(1)
4.3.5 Overcoming technical and biological variations
59(2)
4.4 Advances and applications in plant proteomics
61(1)
4.4.1 Proteogenomics to help annotation of open reading frames (ORFs) in newly sequenced genomes
61(1)
4.4.2 Understanding plant development and responses to environmental clues
62(1)
4.5 Conclusion and future perspective
62(1)
References
63(6)
5 Structural analysis of proteins using X-ray diffraction technique
Umesh B. Gawas
Vinod K. Mandrekar
Mahesh S. Majik
5.1 Introduction
69(1)
5.2 Historical background
70(1)
5.3 X-ray crystallography
71(1)
5.4 Protein X-ray crystallography
72(2)
5.5 Advances in protein crystallography
74(2)
5.6 Case study: extended spectrum β-lactamases
76(4)
5.7 Conclusion
80(1)
Acknowledgments
80(1)
References
80(5)
6. Technological advancements in industrial enzyme research
Vazhakatt Lilly Anne Devasia
R. Kanchana
Poonam Vashist
Usha D. Muraleedharan
6.1 Introduction
85(1)
6.2 Enzyme discovery
86(3)
6.3 Enzyme customization
89(1)
6.4 Improvement of existing enzymes through mutagenic approaches
90(3)
6.4.1 By site-directed mutagenesis
90(1)
6.4.2 By random mutagenesis
91(2)
6.5 High-throughput screening of genetic variants for novel enzyme production
93(1)
6.6 Immobilization of enzymes
93(1)
6.7 Enzyme inhibitor studies
94(1)
6.8 Enzyme promiscuity and multifunctional enzyme studies
95(1)
6.9 Sequence-dependent approach of the novel gene encoding the target enzyme/protein
96(1)
6.10 Function-based identification of the novel gene
96(1)
6.11 Identification of the novel gene by sequencing techniques
97(1)
6.12 Improvement of enzymatic catalysis by microbial cell surface display
98(1)
6.13 Conclusion
99(1)
References
99(4)
7 Biotechnological implications of hydrolytic enzymes from marine microbes
Poonam Vashist
R. Kanchana
Vazhakatt Lilly Anne Devasia
Priyanka V. Shirodkar
Usha D. Muraleedharan
7.1 Introduction
103(1)
7.2 Applications of marine hydrolases
104(8)
7.2.1 Biorefineries
105(1)
7.2.2 Pharmaceuticals and cosmeceuticals
105(1)
7.2.3 Food industry
106(2)
7.2.4 Feed industry
108(1)
7.2.5 Biopolymer industry
108(1)
7.2.6 Detergent industry
109(1)
7.2.7 Textile industry
109(1)
7.2.8 Leather industry
110(1)
7.2.9 Paper and pulp industry
110(1)
7.2.10 Organic synthesis
111(1)
7.2.11 Waste treatment
111(1)
7.2.12 Nanoparticle synthesis
112(1)
7.3 Prospecting the use of hydrolytic enzymes from marine microbes
112(1)
References
113(5)
Further reading
118(1)
8 Recent advances in bioanalytical techniques using enzymatic assay
Kanchanmala Deshpande
Geetesh K. Mishra
8.1 Introduction
119(2)
8.1.1 Why biosensors?
120(1)
8.1.2 Emergence of biosensors
120(1)
8.2 Classification of biosensors
121(6)
8.2.1 Enzyme biosensor
122(2)
8.2.2 Overcoming limitations in enzyme-based biosensors
124(2)
8.2.3 Application of enzyme biosensor
126(1)
8.3 Enzyme biosensors for environmental monitoring
127(1)
8.4 Enzyme biosensors for food quality monitoring
128(1)
8.5 Future prospects and conclusions
129(2)
References
131(3)
Further reading
134(1)
9 Microbial lectins: roles and applications
Hetika Kotecha
Preethi B. Poduval
9.1 Introduction
135(1)
9.2 Roles and mechanism of lectin action
136(5)
9.3 Applications of microbial lectins
141(2)
9.3.1 Lectins in diagnostics
141(1)
9.3.2 Lectins in bioremediation
141(1)
9.3.3 Lectins in bioflocculation
142(1)
9.3.4 Lectins in fluorescent staining
143(1)
9.3.5 Lectin and probiotics
143(1)
9.4 Conclusion
143(1)
References
144(3)
Further reading
147(2)
10 Biodegradation of seafood waste by seaweed- associated bacteria and application of seafood waste for ethanol production
Sanika Samant
Milind Mohan Naik
Diviya Chandrakant Vaingankar
Sajiya Yusuf Mujawar
Prachi Parab
Surya Nandan Meena
10.1 Introduction
149(2)
10.2 Materials and methods
151(3)
10.2.1 Collection of marine seaweed samples
151(1)
10.2.2 Enrichment of Ulva-associated bacteria
151(1)
10.2.3 Isolation of calcium carbonate solubilizing marine Ulva-associated bacteria
151(1)
10.2.4 Investigating seafood waste (fish, crab, prawn waste) utilizing potential of selected calcium carbonate-solubilizing bacteria
151(1)
10.2.5 Agarase production by marine Ulva sp.-associated bacteria
152(1)
10.2.6 Production of protease by Ulva sp.-associated bacteria
152(1)
10.2.7 Phosphate solubilization by acid-producing Ulva sp.-associated bacteria
152(1)
10.2.8 Cellulase production by Ulva sp.-associated bacteria
152(1)
10.2.9 Production of chitinase by Ulva sp.-associated bacteria
153(1)
10.2.10 Degradation of fish/crab/prawn waste using microbial consortia developed using Ulva sp.-associated bacteria
153(1)
10.2.11 Identification of seaweed-associated bacteria
154(1)
10.3 Results and discussion
154(3)
10.4 Application of seafood waste for bioethanol production
157(1)
Acknowledgments
158(1)
References
158(3)
11 Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances
Neha Prabhu
Sunita Borkar
Sandeep Garg
11.1 Introduction
161(1)
11.2 Phosphate-solubilizing microorganisms: an overview
161(3)
11.2.1 Screening microorganisms for phosphate solubilization
163(1)
11.3 Phosphate solubilizing microorganisms: mechanisms
164(3)
11.3.1 Inorganic phosphate-solubilization mechanisms
165(2)
11.3.2 Organic phosphate solubilization mechanisms
167(1)
11.4 Phosphate-solubilizing microorganisms: applications and advances
167(4)
11.4.1 Biofertilizer
167(2)
11.4.2 Phytoremediation
169(2)
11.5 Conclusion
171(1)
References
171(6)
12. Metagenomics a modern approach to reveal the secrets of unculturable microbes
Kashif Shamim
Sajiya Yusuf Mujawar
Milind Mutnale
12.1 Introduction
177(1)
12.2 History of metagenomic approach
178(1)
12.3 Approach, strategies, and tools used in the metagenomic analysis
179(4)
12.3.1 Isolation of metagenomic DNA
180(2)
12.3.2 Cloning vector and host
182(1)
12.3.3 Screening of metagenomic clones
182(1)
12.3.4 Sequencing and bioinformatics analysis of the metagenomic clones
183(1)
12.4 Application of the metagenomic approach
183(3)
12.5 Conclusion remarks
186(3)
Acknowledgments
189(1)
References
189(8)
13 Halophilic archaea as beacon for exobiology: recent advances and future challenges
Abhilash Sundarasami
Akshaya Sridhar
Kabilan Mani
13.1 Introduction
197(1)
13.2 Missions with exobiological significance
198(4)
13.2.1 1960-2000
198(2)
13.2.2 2000-10
200(1)
13.2.3 2010-18
201(1)
13.3 Extremophiles-a general overview
202(2)
13.4 Halophiles in the universe
204(1)
13.5 Modes of energy generation in halophilic archaea
205(1)
13.6 Radiation resistance in halophilic archaea
206(1)
13.7 Halophilic archaea from ancient halite crystals
207(1)
13.8 Adaptation of halophilic archaea to extreme temperatures and pH
208(1)
13.9 Growth of halophilic archaea in the presence of perchlorates
209(1)
13.10 Saline environments in space
209(1)
13.10.1 Mars
209(1)
13.10.2 Europa
210(1)
13.10.3 Enceladus
210(1)
13.11 Methods for detecting halophilic archaea in saline econiches
210(1)
13.12 Conclusion
211(1)
References
212(3)
14 Bacterial probiotics over antibiotics: a boon to aquaculture
Samantha Fernandes
Savita Kerkar
14.1 Introduction
215(1)
14.2 The probiotic approach
216(1)
14.3 Antimicrobial mechanism of probiotics
217(2)
14.3.1 Production of antagonistic compounds
217(1)
14.3.2 Competitive exclusion
217(1)
14.3.3 Immunomodulation
218(1)
14.3.4 Production of other beneficiary compounds
219(1)
14.4 Screening and development of probiotics
219(5)
14.4.1 In vitro screening for antimicrobial activity
219(2)
14.4.2 Mucus adhesion, colonization, and growth profile
221(1)
14.4.3 Pathogenicity test
221(1)
14.4.4 Organism identification
222(1)
14.4.5 Route of delivery, dosage, and frequency
222(1)
14.4.6 In vivo validation
223(1)
14.4.7 Shelf life
223(1)
14.4.8 Economic evaluation
224(1)
14.5 Recent probiotics used in aquaculture
224(1)
14.6 Conclusion and future perspectives
224(4)
Acknowledgments
228(1)
References
228(5)
15 Recent advances in quorum quenching of plant pathogenic bacteria
Gauri A. Achari
R. Ramesh
15.1 Introduction
233(1)
15.2 Overview of the different quorum sensing molecules of plant pathogenic bacteria
234(2)
15.3 Mechanisms of quorum quenching
236(3)
15.3.1 Inhibition of synthesis of quorum sensing signal
236(1)
15.3.2 Inhibition of sensing of quorum sensing signal
236(1)
15.3.3 Degradation of quorum sensing molecules
237(2)
15.4 Quorum quenching against plant pathogens
239(1)
15.5 Transgenic plants expressing quorum quenching molecules
240(1)
15.6 Summary and future research needs
241(1)
Acknowledgments
242(1)
References
242(5)
16 Trends in production and fuel properties of biodiesel from heterotrophic microbes
Gouri Raut
Srijay Kamat
Ameeta RaviKumar
16.1 Introduction
247(1)
16.2 Growth of different sources of biodiesel on various substrates
248(4)
16.2.1 Screening of lipid-producing microorganisms
248(4)
16.3 Harvesting of cellular biomass from fermentation broth
252(1)
16.4 Cell lysis
253(2)
16.5 Lipid extraction
255(2)
16.6 Transesterification/FAME preparation-conventional two-step, one-step, use of lipases
257(4)
16.6.1 Transesterification process
257(4)
16.7 Determination of fuel properties of heterotrophic microbes
261(3)
16.7.1 Cetane number
261(1)
16.7.2 Viscosity
262(1)
16.7.3 Density
262(1)
16.7.4 Higher heating value
263(1)
16.8 Conclusions and future perspectives
264(1)
Acknowledgments
264(1)
References
265(10)
17 Advances and microbial techniques for phosphorus recovery in sustainable wastewater management
Meghanath Shambhu Prabhu
Srikanth Mutnuri
17.1 Introduction
275(2)
17.2 Technologies for phosphorus recovery
277(2)
17.2.1 The process of struvite crystallization
277(1)
17.2.2 Recovery of struvite from wastes
278(1)
17.2.3 Source of magnesium for struvite formation
278(1)
17.3 Struvite crystallization technologies
279(4)
17.3.1 Lab-scale studies
279(1)
17.3.2 Biological struvite precipitation
279(3)
17.3.3 Struvite formation within wastewater treatment plants: pilot-scale studies
282(1)
17.4 Use of struvite as fertilizer and its potential market
283(2)
17.4.1 Use of struvite to increase soil fertility
283(1)
17.4.2 World and India's fertilizer requirements
284(1)
17.5 Economic feasibility of struvite recovery process
285(1)
17.6 Conclusion
285(1)
References
286(5)
18 Genotoxicity assays: the micronucleus test and the single-cell gel electrophoresis assay
Avelyno D'Costa
M.K. Praveen Kumar
S.K. Shyama
18.1 Introduction
291(7)
18.1.1 Micronucleus test
292(3)
18.1.2 Comet assay (single-cell gel electrophoresis)
295(3)
18.2 Conclusion
298(1)
References
299(4)
19 Advances in methods and practices of ectomycorrhizal research
Lakshangy S. Charya
Sandeep Garg
19.1 Introduction
303(1)
19.2 Benefits of ECM association
304(1)
19.3 Cultivation and physiology of ECM fungi
305(3)
19.3.1 Cultivation media for ECM fungi
305(1)
19.3.2 Isolation methods of ECM fungi
306(2)
19.4 Identification methods of ECM fungi
308(2)
19.4.1 Conventional methods
308(1)
19.4.2 Case study
309(1)
19.4.3 Challenges in the identification of ECM
310(1)
19.4.4 Advances in identification of ECM
310(1)
19.5 Assessment and quantification of ECM
310(3)
19.5.1 Conventional methods of assessment and quantification of ECM
311(1)
19.5.2 Molecular tools of assessment and quantification of ECM
312(1)
19.6 Stress response and pigments/phenolics in ECM fungi
313(2)
19.7 Application in forestry: ECM fungi as bioinoculants
315(3)
19.7.1 Types of ectomycorrhizal inoculants
316(2)
19.7.2 Ectomycorrhizal inoculants in field applications
318(1)
19.8 Conclusion
318(2)
19.9 Future prospects
320(1)
Acknowledgments
320(1)
References
320(5)
Further reading
325(2)
20 Photocatalytic and microbial degradation of Amaranth dye
Pranay P. Morajkar
Amarja P. Naik
Sandesh T. Bugde
Bhanudas R. Naik
20.1 Introduction
327(2)
20.2 Advanced photocatalytic amaranth degradation using titanium dioxide
329(9)
20.2.1 Characterization of TiO2 supported mesoporous Al2O3 catalyst
331(2)
20.2.2 Amaranth adsorption versus photocatalytic- degradation kinetics
333(3)
20.2.3 Identification of photodegradation products using LC-ESI-HRMS technique
336(1)
20.2.4 Toxicity of photodegradation products
337(1)
20.3 Bioremediation of amaranth dye
338(1)
20.4 Coupling of photocatalysis with bioremediation methods
339(3)
References
342(5)
21 Role of nanoparticles in advanced biomedical research
R.K. Kunkalekar
Umesh B. Gawas
21.1 Introduction
347(1)
21.2 Cancer therapy
348(1)
21.3 Metal nanoparticles as drug delivery and anticancer agents
349(3)
21.3.1 Gold nanoparticles
350(1)
21.3.2 Silver nanoparticles
351(1)
21.4 Metal oxide nanoparticles as drug delivery and anticancer agent
352(2)
21.4.1 Iron oxide nanoparticles
353(1)
21.4.2 Miscellaneous
354(1)
21.5 Carbon-based nanoparticles as drug delivery and anticancer agents
354(2)
21.5.1 Graphene oxide/reduced graphene oxide for drug delivery
355(1)
21.6 Conclusions
356(1)
Acknowledgments
356(1)
References
357(6)
22 Iron-oxygen intermediates and their applications in biomimetic studies
Sunder N. Dhuri
Sarvesh S. Harmalkar
22.1 Introduction
363(4)
22.2 Mononuclear nonheme iron(III)-superoxo complexes
367(1)
22.3 Mononuclear nonheme iron(III)-peroxo complex
368(1)
22.4 Mononuclear nonheme iron(III)-hydroperoxo complex
369(1)
22.5 Mononuclear high-valent iron(IV)-oxo complex
370(1)
22.6 Mononuclear nonheme iron(V)-oxo complex
371(2)
22.7 Application of iron-oxygen intermediates in biomimetics
373(1)
22.8 Summary
373(1)
Acknowledgments
374(1)
References
374(7)
23. Frontiers in developmental neurogenesis
Shanti N. Dessai
23.1 Introduction to neurogenesis
381(1)
23.1.1 Developmental neurogenesis
381(1)
23.2 Signaling pathway cross talk of developmental neurogenesis
382(4)
23.2.1 Notch
383(1)
23.2.2 Wingless/Integrated
384(1)
23.2.3 Hedgehog/Sonic hedgehogs
385(1)
23.2.4 Fibroblast growth factor
385(1)
23.2.5 Neuronal progenitor cell environment
386(1)
23.3 Tools to study developmental neurogenesis
386(5)
23.3.1 In vitro models
387(2)
23.3.2 Time-lapse analysis
389(1)
23.3.3 Transcriptome, metabolomics, and single-cell "omics"
390(1)
23.3.4 Real-time analysis of progenitors in both embryonic and postnatal studies by tissue explants/slice assays
390(1)
23.4 Conclusion
391(1)
References
391(4)
24 Analytical methods for natural products isolation: principles and applications
Mahesh S. Majik
Umesh B. Gawas
Vinod K. Mandrekar
24.1 Introduction
395(1)
24.2 Extraction techniques
396(2)
24.3 Isolation and purification techniques
398(2)
24.4 High-performance liquid chromatography
400(1)
24.4.1 Analysis of chromatograms obtained from H PLC/GC
401(1)
24.5 Spectroscopic methods for characterization
401(2)
24.5.1 Ultraviolet-visible spectroscopy
402(1)
24.5.2 Infrared spectroscopy
402(1)
24.5.3 Mass spectrometry
402(1)
24.5.4 Nuclear magnetic resonance spectroscopy
402(1)
24.6 Chemical profiling of marine sponges: case studies
403(4)
24.6.1 Marine sponge, Haliclona cribricutis
405(1)
24.6.2 Marine sponge, Fasciospongia cavernosa
405(2)
24.6.3 Marine sponge, Axinella donnani
407(1)
24.7 Conclusion
407(1)
Acknowledgments
408(1)
References
408(3)
25 Advanced bioceramics
Kiran Suresh Naik
25.1 Introduction
411(1)
25.2 Classification of biomaterials
412(1)
25.3 Applications and properties of bioceramics
413(2)
25.3.1 Hydroxyapatite
413(1)
25.3.2 β-Tricalcium phosphate (β-TCP)
414(1)
25.3.3 Alumina (Al2O3)
414(1)
25.3.4 Zirconia
414(1)
25.3.5 Bioglass and glass ceramics
415(1)
25.4 Conclusion and future perspectives
415(1)
Acknowledgments
415(1)
References
416(3)
26 Production of polyhydroxyalkanoates by extremophilic microorganisms through valorization of waste materials
Bhakti B. Salgaonkar
Judith M. Braganca
26.1 Introduction
419(2)
26.2 Synthesis of polyhydroxyalkanoates
421(2)
26.3 Classification of PHAs
423(1)
26.3.1 Biosynthetic origin
423(1)
26.3.2 Monomer size
424(1)
26.3.3 Monomers units
424(1)
26.3.4 Nature of the monomers
424(1)
26.4 Screening, extraction, and characterization of polyhydroxyalkanoates
424(4)
26.4.1 Screening for PHA
424(2)
26.4.2 PHA extraction
426(1)
26.4.3 PHA characterization
426(2)
26.5 Advances in the applications of PHAs
428(2)
26.5.1 Food industry
428(1)
26.5.2 Medical industry
428(1)
26.5.3 Agricultural industry
429(1)
26.6 Extremophilic microorganisms
430(1)
26.7 Extremophilic microorganisms producing PHAs
430(2)
26.8 PHAs from renewable resources and agroindustrial wastes
432(5)
26.9 Conclusions
437(1)
Acknowledgments
437(1)
References
438(7)
27 Techniques for the mass production of Arbuscular Mycorrhizal fungal species
James Dsouza
27.1 Introduction
445(1)
27.2 Pot/substrate-based mass production system
446(1)
27.3 The AM host plants
447(1)
27.4 Root trap cultures
448(1)
27.5 Plant trap cultures
448(1)
27.6 Soil as inoculum
449(1)
27.7 Microenvironment
449(1)
27.8 Conclusion
450(1)
References
450(3)
28 Metagenomics: a gateway to drug discovery
Flory Pereira
28.1 Introduction
453(1)
28.2 Approaches to accelerate antibiotic discovery
454(4)
28.2.1 Mining unusual habitats as a source of novel secondary metabolites
454(1)
28.2.2 Revolutionary cultivation techniques
454(2)
28.2.3 Next-generation sequencing techniques in mining for bioactive compounds
456(2)
28.3 Metagenomic or environmental or community genomic sequencing
458(2)
28.3.1 Sequence-based metagenomics
458(1)
28.3.2 Function-based metagenomics
458(2)
28.4 How metagenomics facilitates drug discovery
460(3)
28.5 Conclusion
463(1)
References
464(5)
29 Application of 3D cell culture techniques in cosmeceutical research
Surya Nandan Meena
Chellandi Mohandass
29.1 Introduction
469(1)
29.2 Two-dimensional cell system in cosmeceutical research
469(1)
29.3 Role of three-dimensional cell culture system in cosmeceutical research
470(1)
29.4 Key features of 3D cell culture
470(1)
29.5 Diverse application of 3D cell culture
471(1)
29.6 Preparation of 3D reconstructed human skin model
472(2)
29.6.1 The traditional approach for 3D skin model preparation
472(2)
29.6.2 Bioprinting technology for preparation of 3D skin models
474(1)
29.7 Application of 3D skin models in cosmeceutical research
474(4)
29.7.1 Skin whitening or melanin content
474(1)
29.7.2 Skin antiaging study using 3D in vitro skin model
475(1)
29.7.3 Antioxidant activity
475(1)
29.7.4 Anti-inflammatory activity
476(1)
29.7.5 Wound healing assay
476(1)
29.7.6 Skin corrosion test
476(1)
29.7.7 Skin cell irritation test
477(1)
29.7.8 Skin penetration assay
477(1)
29.7.9 Phototoxicity study
477(1)
29.7.10 Genotoxicity assay
478(1)
29.7.11 Skin absorption assay
478(1)
29.8 Conclusion
478(1)
Acknowledgments
479(1)
References
479(6)
30 Advances in isolation and preservation strategies of ecologically important marine protists, the thraustochytrids
Varada S. Damare
30.1 Introduction
485(1)
30.2 Occurrence and ecological significance
486(1)
30.3 Isolation
487(8)
30.3.1 Isolation of thraustochytrids
488(6)
30.3.2 Isolation of labyrinthulids
494(1)
30.4 Preservation of cultures
495(1)
30.5 Summary and future prospects
495(1)
Acknowledgments
495(1)
References
496(5)
31 Advances in sampling strategies and analysis of phytoplankton
Priya M. D'Costa
Ravidas K. Naik
31.1 Introduction
501(1)
31.2 Sampling strategies
502(2)
31.2.1 Choice of research vessel
502(1)
31.2.2 Sampling in coastal waters
503(1)
31.2.3 Aspects to be considered
504(1)
31.3 Analysis of phytoplankton
504(10)
31.3.1 Phytoplankton taxonomy
504(1)
31.3.2 Analysis of phytoplankton community structure
505(2)
31.3.3 Analysis of benthic diatoms
507(1)
31.3.4 Analysis of dinoflagellate cysts
508(1)
31.3.5 Study of fouling diatoms/biofilms
508(1)
31.3.6 Analysis of epibiotic phytoplankton
509(1)
31.3.7 Study of picophytoplankton
509(1)
31.3.8 Phytoplankton pigment analysis
510(1)
31.3.9 Analysis of viability and photosynthetic parameters of phytoplankton populations
511(2)
31.3.10 Toxin analysis
513(1)
31.4 Primary productivity
514(1)
31.4.1 Estimation of primary productivity using remote sensing
515(1)
31.4.2 Monitoring of HABs using remote sensing
515(1)
31.5 Future perspectives
515(1)
Acknowledgments
516(1)
References
516(7)
Index 523
Dr. Surya Nandan Meena is currently a DSK PDF at Department of Chemistry, Savitribai Phule Pune University, Pune, India. Earlier Dr. Meena has secured the National Postdoctoral Fellowship through Department of Science and Technology (DST), India and worked at National Institute of Oceanography, Goa for two years. He has completed his MSc (Agri) Plant Biotechnology from University of Agriculture Sciences, Dharwad, India and Ph.D. in Biotechnology from the Department of Biotechnology, Goa University, Goa India through research fellowship of Department of Biotechnology (DBT). Dr. Meena has more than 5 years of postdoctoral research experience in natural products chemistry which resulted in more than 10 peer reviewed research papers in international journals, three book chapters and editors of two books in Elsevier. Dr. Meena has presented his research work in different national and international conferences. Milind Naik has a PhD in Microbiology and is presently working as Assistant Professor in Department of Microbiology at Goa University on the UGC- sponsored Microbiology (M.Sc.) innovative programme-Teaching and Research in Interdisciplinary and emerging areas. His research interests are applied microbiology, Environmental Microbiology, Marine Microbiology, Microbial genetics, Nanobiotechnology, Quorum sensing.