Muutke küpsiste eelistusi

E-raamat: Advances in Body-Centric Wireless Communication: Applications and state-of-the-art

Edited by (University of Bedfordshire, Centre for Wireless Research, UK), Edited by (Texas A&M University at Qatar), Edited by (Texas A&M University at Qatar), Edited by (Queen Mary University of London, School of Electronics Engineering and Computer Science, UK)
  • Formaat: PDF+DRM
  • Sari: Telecommunications
  • Ilmumisaeg: 09-Jun-2016
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849199902
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Telecommunications
  • Ilmumisaeg: 09-Jun-2016
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781849199902
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Body-centric wireless networking (BCWN) and communications is an emerging 4G technology for short (1-5m) and very short (below 1m) range communications systems, with great potential for applications in healthcare delivery, entertainment, surveillance, and emergency services. This book brings together contributions from a multidisciplinary
team of researchers in the field of wireless and mobile communications, signal processing and medical measurements, to present the underlying theory, implementation challenges and applications of this exciting new technology.

Topics covered include antennas and radio systems design challenges for BCWNs; on/off body propagation and modelling at narrow band frequencies; ultra wideband radio channel characterization and system modelling for BANs; millimeter-wave radio propagation for BCWN; implantable devices and in-vivo communication challenges for medical technologies; diversity and MIMO front-ends for efficient body-centric wireless communications; on-body antennas and radio channels for GPS applications; materials characterization and flexible structure design for textile-based wearable applications in military and consumer applications; ultra wideband body-centric networks for localization and motion capture; down-scaling to the nano-scale in body-centric nano-networks; and the road ahead for body-centric wireless communication and networks.

Body-Centric Wireless Communication and Networks will be of interest to researchers in academia and industry working in telecommunications engineering, antenna design, mobile and wireless networks, and healthcare technologies.
Acknowledgements xiii
1 Introduction 1(6)
1.1 Frequency band allocation for body area communication
3(1)
1.2 Book organization
4(1)
References
5(2)
2 Diversity and cooperative communications in body area networks 7(36)
Abstract
7(1)
2.1 Introduction
7(2)
2.2 Cooperative on-body communications — illustrations
9(1)
2.3 General overview of cooperative communications
10(2)
2.4 State-of-the-art in BAN literature
12(4)
2.4.1 Co-located spatial diversity in BANs
12(1)
2.4.2 Cooperative diversity
13(3)
2.5 Experimental method, gaining data for studies of cooperative communications
16(1)
2.6 Coded GFSK on-body communications with cooperative diversity
17(4)
2.6.1 System model for coded GFSK CoBANs
18(1)
2.6.2 Performance analysis
19(2)
2.7 Outage analysis, cooperative selection combining and maximum-ratio combining
21(1)
2.8 Implementation of cooperative selection and maximum-ratio combining
21(5)
2.8.1 Single-link fading statistics
22(1)
2.8.2 Performance analysis
23(1)
2.8.3 Analysis of second-order statistics
24(2)
2.9 Cooperative diversity with switched combining
26(7)
2.9.1 Switched combining — implementation
27(1)
2.9.2 Theoretical performance
27(2)
2.9.3 Analysis of outage probability
29(2)
2.9.4 Switching rate analysis
31(2)
2.10 Cooperative switched diversity with power control
33(4)
2.10.1 Transmit power control using "sample-and-hold" prediction
33(1)
2.10.2 First- and second-order statistics
34(1)
2.10.3 Performance analysis
35(2)
2.11 Conclusion
37(1)
References
37(6)
3 Ultra wideband radio channel characterisation for body-centric wireless communication 43(38)
3.1 Analysis methodology applied for body-centric radio channel modelling
43(1)
3.2 UWB antennas for body-centric radio propagation measurements
44(4)
3.2.1 Pulse fidelity
45(3)
3.3 Antenna placement and orientation for UWB on-body radio channel characterisation
48(2)
3.4 Measurement procedure for UWB on-body radio channel characterisation
50(2)
3.5 UWB on-body propagation channel analysis
52(8)
3.5.1 On-body radio channel characterisation for static subjects
53(2)
3.5.2 Transient characterisation of UWB on-body radio channel
55(2)
3.5.3 Pulse fidelity
57(3)
3.6 UWB off-body radio propagation channel characterisation
60(9)
3.6.1 Antenna placement and measurement procedure
60(1)
3.6.2 PL characterisation
60(4)
3.6.3 Transient characterisation
64(3)
3.6.4 Pulse fidelity
67(2)
3.7 UWB on-body radio channel characterisation for pseudo-dynamic motion
69(8)
3.7.1 Channel PL variations as a function of link and movements
69(3)
3.7.2 Time-delay and small-scale fading analysis
72(5)
3.8 Summary
77(1)
Acknowledgements
77(1)
References
77(4)
4 Sparse characterization of body-centric radio channels 81(16)
4.1 Introduction
81(1)
4.2 Basics of sparse non-parametric technique and compressive sensing
82(2)
4.2.1 Sparse non-parametric technique
82(2)
4.2.2 Basics of compressive sensing framework
84(1)
4.3 Results and discussions regarding non-parametric modelling and on-body impulse response estimation
84(6)
4.3.1 Establishing sparse non-parametric propagation models and their evaluation
84(3)
4.3.2 Sparse on-body UWB channel estimation
87(3)
4.4 Statistical learning technique and its application in BWCS
90(3)
4.4.1 Small-sample learning and background
90(2)
4.4.2 Example of support vector regression
92(1)
4.5 Conclusion
93(1)
Acknowledgements
93(1)
References
94(3)
5 Antenna/human body interactions in the 60 GHz band: state of knowledge and recent advances 97(46)
5.1 Introduction
97(2)
5.2 Emerging body-centric applications at millimetre waves
99(3)
5.2.1 Heterogeneous mobile networks
99(1)
5.2.2 Body-to-body secured communications
100(1)
5.2.3 Radar-on-chip for gesture and movement recognition
100(1)
5.2.4 e-Health monitoring and medical applications
101(1)
5.3 General features of interaction of millimetre waves with the human body
102(2)
5.3.1 Target organs and tissues
102(1)
5.3.2 EM properties of tissues
103(1)
5.4 Plane wave illumination at the air/skin interface
104(8)
5.4.1 Reflection and transmission
105(3)
5.4.2 Absorption
108(1)
5.4.3 Impact of clothing
108(2)
5.4.4 Heating
110(2)
5.5 Exposure limits: guidelines and standards
112(2)
5.5.1 Dosimetry metrics
112(1)
5.5.2 Exposure limits
113(1)
5.6 Antennas for body-centric communications
114(5)
5.6.1 On-body communications
115(1)
5.6.2 Off-body communications
116(3)
5.7 Experimental skin-equivalent models
119(7)
5.7.1 Semi-solid phantom: EM model
120(1)
5.7.2 Semi-solid phantom: thermal model
121(2)
5.7.3 Solid phantom
123(3)
5.8 Near-field coupling between antennas and human body
126(12)
5.8.1 Tools for the exposure assessment
126(2)
5.8.2 Impact of the feeding type
128(5)
5.8.3 Heating of tissues
133(2)
5.8.4 Electrotextiles for the exposure reduction
135(3)
5.9 Conclusion
138(1)
Acknowledgements
138(1)
References
139(4)
6 Antennas for ingestible capsule telemetry 143(44)
6.1 Introduction
143(1)
6.2 Capsule telemetry in medicine and clinical research
144(3)
6.2.1 Wireless endoscopy
144(2)
6.2.2 Wireless telemetry of physiological parameters
146(1)
6.2.3 Animal-implantable wireless telemetry
146(1)
6.2.4 Conclusions
147(1)
6.3 Biological environment
147(3)
6.3.1 GI capsule passage
147(2)
6.3.2 Implantable case
149(1)
6.4 In-body antenna parameters
150(2)
6.4.1 Resonant frequency
150(1)
6.4.2 Bandwidth
150(1)
6.4.3 Radiation efficiency
151(1)
6.4.4 Detuning immunity
151(1)
6.4.5 Directivity and gain
152(1)
6.5 Choice of operating frequency
152(4)
6.5.1 Higher-frequency attenuation losses
153(1)
6.5.2 Lower-frequency efficiency and reflection losses
154(1)
6.5.3 Studies on optimal operating frequency
155(1)
6.6 Fundamental limitations of ESAs
156(3)
6.7 Capsule antenna types and overview
159(18)
6.7.1 Wire antennas
160(4)
6.7.2 Planar printed antennas
164(5)
6.7.3 Conformal printed antennas
169(8)
6.8 Conclusions
177(2)
Acknowledgements
179(1)
References
179(8)
7 In vivo wireless channel modeling 187(26)
7.1 Introduction
187(2)
7.2 EM modeling of the human body
189(1)
7.3 EM wave propagation through human tissues
190(1)
7.4 Frequency of operation
191(2)
7.5 In vivo antenna design considerations
193(2)
7.6 In vivo EM wave propagation models
195(2)
7.7 In vivo channel characterization
197(9)
7.7.1 Simulation setup
197(2)
7.7.2 Experimental Setup
199(1)
7.7.3 Results
200(6)
7.8 Comparison of in vivo and ex vivo channels
206(1)
7.9 Summary
207(1)
Acknowledgements
207(1)
References
207(6)
8 Diversity and MIMO for efficient front-end design of body-centric wireless communications devices 213(40)
Abstract
213(1)
8.1 Introduction
213(2)
8.2 Receive diversity for body-worn devices
215(21)
8.2.1 Diversity performance analysis
217(3)
8.2.2 Diversity channel characterization and spectral analysis
220(10)
8.2.3 Diversity for interference cancellation
230(6)
8.3 MIMO channels and capacity of on-body channels
236(13)
8.3.1 MIMO channel model
237(1)
8.3.2 MIMO for channel capacity
238(3)
8.3.3 Transmit—receive diversity with MIMO
241(1)
8.3.4 MIMO stochastic channel modelling
242(7)
8.4 Summary
249(1)
References
249(4)
9 On-body antennas and radio channels for GPS applications 253(36)
9.1 GPS antennas in the presence of human body
254(10)
9.1.1 Experimental set-up for on-body antenna performance
256(2)
9.1.2 Effects of varying antenna-body separation
258(2)
9.1.3 Dependency on on-body GPS antenna position
260(1)
9.1.4 Effects of body posture
261(3)
9.2 On-body GPS antennas in real working environment
264(19)
9.2.1 Statistical modelling of GPS multipath environment
266(3)
9.2.2 On-body GPS antennas in multipath environment
269(14)
9.3 Summary
283(1)
References
283(6)
10 Textile substrate integrated waveguide technology for the next-generation wearable microwave systems 289(48)
10.1 Introduction: the contribution of wearable technology to ubiquitous computing
289(1)
10.2 Conventional wearable antennas
290(2)
10.2.1 On-body considerations
290(1)
10.2.2 Topologies and fabrication methods
291(1)
10.3 Substrate integrated waveguide technology for a new class of wearable microwave components
292(2)
10.3.1 Substrate integrated waveguides: fundamentals
292(1)
10.3.2 SIW techniques and textile materials
293(1)
10.4 Textile substrate integrated waveguide designs
294(28)
10.4.1 Textile SIW cavity-backed slot antennas
294(4)
10.4.2 Half-mode SIW textile antenna
298(8)
10.4.3 Quarter-mode SIW antenna
306(4)
10.4.4 Wideband SIW cavity-backed slot antennas
310(7)
10.4.5 Textile microwave components
317(5)
10.5 Textile SIW antennas as hybrid energy-harvesting platforms
322(7)
10.5.1 Introduction
322(1)
10.5.2 Exploiting the textile antenna as integration platform
323(1)
10.5.3 Wideband SIW textile antenna with integrated solar harvester
324(1)
10.5.4 SIW cavity-backed slot antenna with integrated hybrid energy-harvesting hardware
325(4)
References
329(8)
11 Ultra wideband body-centric networks for localisation and motion capture applications 337(38)
11.1 Introduction
337(1)
11.2 Indoor propagation channel and multipath environment
338(2)
11.3 IR-UWB technology
340(3)
11.3.1 Advantages and disadvantages of IR-UWB technology
340(2)
11.3.2 Body-centric UWB localisation applications
342(1)
11.4 UWB body-centric localisation scheme
343(4)
11.4.1 NLOS identification
343(2)
11.4.2 Non-line of sight mitigation
345(2)
11.4.3 TOA data fusion method
347(1)
11.5 BS configurations for UWB localisation
347(3)
11.5.1 Cuboid-shape configuration
348(1)
11.5.2 Y-shape configuration
348(1)
11.5.3 Geometric dilution of precision
348(2)
11.6 Numerical investigation of UWB localisation accuracy
350(7)
11.6.1 Numerical analysis of body-worn antennas
350(1)
11.6.2 Analysis of body-worn antenna localisation
351(4)
11.6.3 Effect of the presence of obstacles near BSs
355(2)
11.7 Body-worn antennas localisation in realistic indoor environment
357(9)
11.7.1 Measurement set-up
357(1)
11.7.2 NLOS identification and mitigation
358(6)
11.7.3 Accuracy and error range analysis
364(2)
11.8 Localisation of body-worn antennas using UWB and optical motion capture system
366(4)
11.8.1 Measurement set-up for upper body localisation
366(1)
11.8.2 Localisation results and analysis
367(3)
11.9 Summary
370(1)
References
370(5)
12 Down scaling to the nano-scale in body-centric nano-networks 375(38)
12.1 Development of nano-communication
375(1)
12.2 Applications of nano-communication
376(5)
12.3 Available paradigms of nano-communication
381(2)
12.3.1 Molecular communication
381(1)
12.3.2 Acoustic communication
382(1)
12.3.3 EM communication
382(1)
12.4 Current study on body-centric nano-networks at THz band
383(20)
12.4.1 Numerical modelling of THz wave propagation in human tissues
383(9)
12.4.2 Effects of non-flat interfaces in human skin tissues on the in vivo THz communication channel
392(11)
12.5 Future work
403(2)
References
405(8)
13 The road ahead for body-centric wireless communication and networks 413(10)
13.1 Market prospects for body-centric wireless networks
413(2)
13.2 Challenges and future perspective of BCWNs
415(5)
13.2.1 Complex environment
415(1)
13.2.2 Spectrum shortage
415(1)
13.2.3 Body-to-body communications
416(1)
13.2.4 5G
417(1)
13.2.5 Antenna design and channel modelling
418(1)
13.2.6 Power consumption and battery life
419(1)
13.2.7 Security and privacy
419(1)
References
420(3)
Index 423
Dr. Qammer H. Abbasi is an Assistant Research Scientist in the Center for Remote Healthcare Technology and System Extension at Qatar in ECEN Department, Texas A&M University at Qatar and also a Visiting Research Fellow at Queen Mary University of London (UK). Dr. Abbasi has contributed to a patent, more than 100 leading international technical journal and conference papers in addition to 4 books.



Dr Masood Ur Rehman is a Lecturer in the Centre for Wireless Research at University of Bedfordshire (UK). He has authored 2 books, 3 book chapters, over 50 technical papers in leading journals and peer-reviewed conferences and contributed to one patent.



Dr. Khalid Qaraqe is a Professor in the Department of Electrical and Computer Engineering of Texas A&M University at Qatar. He has published more than 150 papers and written 9 book chapters. He is managing director for the Center for Remote Health Care Extension at Qatar in Texas A&M University at Qatar.



Dr Akram Alomainy is an Associate Professor in the Antennas and Electromagnetics Research Group and Industry Strategy Coordinator at the School of Electronics Engineering and Computer Science at Queen Mary University of London (UK). He has authored one book, five book chapters and more than 200 technical papers in leading journals and peer-reviewed conferences.