Muutke küpsiste eelistusi

E-raamat: Advances in Brazing: Science, Technology and Applications

Edited by (University of Kentucky, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 222,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Brazing processes offer enhanced control, adaptability and cost-efficiency in the joining of materials. Unsurprisingly, this has lead to great interest and investment in the area. Drawing on important research in the field, Advances in brazing provides a clear guide to the principles, materials, methods and key applications of brazing.Part one introduces the fundamentals of brazing, including molten metal wetting processes, strength and margins of safety of brazed joints, and modeling of associated physical phenomena. Part two goes on to consider specific materials, such as super alloys, filler metals for high temperature brazing, diamonds and cubic boron nitride, and varied ceramics and intermetallics. The brazing of carbon-carbon (C/C) composites to metals is also explored before applications of brazing and brazed materials are discussed in part three. Brazing of cutting materials, use of coating techniques, and metal-nonmetal brazing for electrical, packaging and structural applications are reviewed, along with fluxless brazing, the use of glasses and glass ceramics for high temperature applications and nickel-based filler metals for components in contact with drinking water.With its distinguished editor and international team of expert contributors, Advances in brazing is a technical guide for any professionals requiring an understanding of brazing processes, and offers a deeper understanding of the subject to researchers and engineers within the field of joining.

Arvustused

"Drawing on important recent research in the field of soldering, this book provides a clear guide to the basic principles, materials, methods, and the main applicationsWith its author and the international team of expert contributors, the book is a technical guide for all professionals who require a study on May brazing processes." --WeldingLibrary.com, January 2014

"A great primary source of scientific and practical information., " --Welding Journal

Contributor contact details xi
Preface xv
Part I Fundamentals of brazing
1(82)
1 The wetting process in brazing
3(28)
N. Eustathopoulos
F. Hodaj
O. Kozlova
1.1 Introduction
3(1)
1.2 Wetting of solids by liquid metals and oxides
4(6)
1.3 Wetting versus brazing: general considerations
10(8)
1.4 Brazing of metals and ceramics by non-reactive and reactive alloys
18(9)
1.5 Conclusion
27(1)
1.6 References
28(3)
2 Strength and margins of brazed joints
31(24)
Y. Flom
2.1 Introduction
31(1)
2.2 Applicability of common failure criteria to analysis of brazed joints
32(10)
2.3 Alternative approach for developing failure assessment diagrams (FADs)
42(11)
2.4 Conclusion
53(1)
2.5 Acknowledgements
53(1)
2.6 References
53(2)
3 Modeling of the sequence of phenomena in brazing
55(28)
D. P. Sekulic
3.1 Introduction
55(2)
3.2 Modeling brazing systems
57(6)
3.3 Finite element analysis of residual stresses in brazed structures
63(6)
3.4 Micro-scale brazing phenomena modeling
69(8)
3.5 Conclusions
77(1)
3.6 References
77(6)
Part II Materials used in brazing
83(338)
4 Brazing of superalloys and the intermetallic alloy (y -TiAl)
85(36)
V. F. Khorunov
S. V. Maksymova
4.1 Introduction
85(1)
4.2 Brazing of superalloys on a nickel base
86(14)
4.3 Brazing of titanium aluminides
100(15)
4.4 Conclusion
115(1)
4.5 Future trends
116(1)
4.6 References
117(4)
5 High-temperature brazing: filler metals and processing
121(39)
A. Rabinkin
5.1 Introduction
121(1)
5.2 Features of base metal (BM) alloys used in high-temperature brazing
122(1)
5.3 Brazing filler metals (BFMs) for joining high-temperature base metals
123(9)
5.4 High-temperature base metal brazing
132(18)
5.5 Metallurgical paths of joint formation
150(3)
5.6 Industrial applications
153(4)
5.7 References
157(3)
6 Brazing of diamonds and cubic boron nitride
160(34)
A. Rabinkin
A. E. Shapiro
Titanium Brazing
M. Boretius
6.1 Introduction
160(1)
6.2 Physical properties of diamond and cubic boron nitride (CBN)
161(4)
6.3 Diamond's interaction with metals
165(9)
6.4 Diamond graphitization during annealing and brazing
174(1)
6.5 Wetting of diamond by metals and alloys
174(2)
6.6 Wetting of cubic boron nitride (CBN)
176(1)
6.7 Brazing filler metals and techniques for diamond joining
176(6)
6.8 Mechanical testing of diamond joints
182(2)
6.9 Brazing of cubic boron nitride (CBN)
184(3)
6.10 Brazed cubic boron nitride (CBN) products
187(3)
6.11 Conclusion
190(1)
6.12 References
191(3)
7 Brazing of oxide, carbide, nitride and composite ceramics
194(27)
H. Peng
7.1 Introduction
194(1)
7.2 Difficulties of brazing with ceramics and solutions
194(2)
7.3 Brazing of oxide ceramics
196(4)
7.4 Brazing of nitride ceramics
200(5)
7.5 Brazing of carbide ceramics
205(7)
7.6 Brazing of carbon-carbon (C/C) composites
212(4)
7.7 Conclusion
216(3)
7.8 References
219(2)
8 Brazing of nickel, ferrite and titanium-aluminum intermetallics
221(28)
H. Peng
8.1 Introduction
221(1)
8.2 Physical properties and brazing properties of Ni-Al system intermetallics
222(3)
8.3 Physical properties and brazing properties of Fe-Al intermetallics
225(4)
8.4 Physical properties and brazing properties of Ti-Al intermetallics
229(1)
8.5 Brazing between Ti-Al intermetallics
230(16)
8.6 Conclusion
246(1)
8.7 References
247(2)
9 Brazing of aluminium and aluminium to steel
249(31)
V. F. Khorunov
O. M. Sabadash
9.1 Introduction
249(1)
9.2 Brazing aluminium and its alloys using reactive fluxes
250(8)
9.3 Brazing of aluminium to stainless steel
258(5)
9.4 Arc flux brazing of aluminium to galvanised steels
263(5)
9.5 Soldering of aluminium
268(7)
9.6 Conclusion and future trends
275(1)
9.7 References
276(4)
10 Controlled atmosphere brazing of aluminum
280(43)
H. Zhao
R. Woods
10.1 Introduction
280(1)
10.2 Applications of controlled atmosphere brazing (CAB) of aluminum
281(3)
10.3 Materials involved in controlled atmosphere brazing (CAB) of aluminum
284(8)
10.4 Oxide and flux
292(7)
10.5 Controlled atmosphere brazing (CAB) process
299(9)
10.6 Corrosion in controlled atmosphere brazing (CAB) brazed heat exchangers
308(10)
10.7 References
318(5)
11 Active metal brazing of advanced ceramic composites to metallic systems
323(38)
R. Asthana
M. Singh
11.1 Introduction
323(2)
11.2 Brazing dissimilar materials
325(8)
11.3 Brazing ceramic-matrix composites
333(22)
11.4 Conclusions
355(1)
11.5 Acknowledgment
356(1)
11.6 References
356(5)
12 Brazing of metal and ceramic joints
361(33)
S. Hausner
B. Wielage
12.1 Introduction
361(2)
12.2 Brazing of metal and ceramic
363(2)
12.3 Brazing of metallized ceramics
365(2)
12.4 Active brazing of metal-ceramic compounds
367(3)
12.5 Influencing the mechanical properties of brazed metal-ceramic compounds
370(5)
12.6 Preparation for and execution of the brazing process
375(2)
12.7 Examination methods for brazed metal-ceramic compounds
377(1)
12.8 Example of an active-brazed metal-ceramic compound
378(1)
12.9 Induction brazing of metal-ceramic compounds
379(10)
12.10 Conclusion
389(2)
12.11 Acknowledgements
391(1)
12.12 References
391(3)
13 Brazing of carbon-carbon (C/C) composites to metals
394(27)
T.-T. Ikeshoji
13.1 Introduction
394(1)
13.2 Carbon-carbon composites
395(4)
13.3 Brazing filler alloys for brazing of carbon-carbon composites and metals
399(10)
13.4 Anisotropy of carbon-carbon composites and their brazing with metals
409(4)
13.5 Indirect methods for brazing carbon-carbon composites to metals
413(4)
13.6 Conclusion
417(1)
13.7 References
417(4)
Part III Applications of brazing and brazed materials
421(166)
14 Brazing of cutting materials
423(49)
W. Tillmann
A. Elrefaey
L. Wojarski
14.1 Introduction
423(2)
14.2 Cutting materials
425(4)
14.3 The main factors controlling the quality of joints
429(12)
14.4 Brazing filler metals
441(3)
14.5 Induced stresses in brazed joints
444(8)
14.6 Case studies
452(12)
14.7 Conclusion and future trends
464(2)
14.8 References
466(6)
15 Coating techniques using brazing
472(26)
H. Krappitz
15.1 Introduction
472(1)
15.2 Fundamentals of brazed coatings
473(5)
15.3 Classification of brazed coatings
478(16)
15.4 Functional coatings
494(2)
15.5 Conclusion
496(1)
15.6 References
496(2)
16 Metal-nonmetal brazing for electrical, packaging and structural applications
498(27)
C. A. Walker
16.1 Introduction
498(1)
16.2 Designing and specifying a brazement
499(7)
16.3 Metallization schemes
506(1)
16.4 Brazing method selection
507(4)
16.5 Performing the brazing operation
511(1)
16.6 Testing the brazements
512(2)
16.7 Test results and analysis for select material sets
514(6)
16.8 Future trends
520(1)
16.9 Sources of further information and advice
521(1)
16.10 References
522(3)
17 Glasses and glass-ceramics as brazing materials for high-temperature applications
525(20)
M. Salvo
V. Casalegno
S. Rizzo
F. Smeacetto
M. Ferraris
17.1 Introduction
525(1)
17.2 Glass and glass-ceramic sealants for solid oxide fuel cells
526(9)
17.3 Glass and glass-ceramic joining for SiC-based materials
535(5)
17.4 References
540(5)
18 Brazing of nickel-based filler metals for pipes and other components in contact with drinking water
545(21)
I. Hoyer
B. Wielage
18.1 Introduction: brazing filler metals for corrosion-resistant applications
545(2)
18.2 Materials and components in drinking water installations
547(4)
18.3 Current drinking water regulations and standards
551(2)
18.4 Test rig and samples
553(3)
18.5 Test results
556(7)
18.6 Conclusion
563(1)
18.7 References
563(3)
19 Fluxless brazing of aluminium
566(21)
D. K. Hawksworth
19.1 Introduction
566(1)
19.2 Definition of fluxless brazing
567(1)
19.3 Controlled atmosphere brazing process limitations
567(3)
19.4 Background chemistry and metallurgy influencing fluxless brazing
570(2)
19.5 Fluxless brazing processes
572(11)
19.6 Conclusion: a summary of fluxless brazing processes
583(1)
19.7 References
584(3)
Index 587
Dusan P. Sekulic is Secat J. G. Morris Aluminium Professor at the University of Kentucky. He is also the Director of the Brazing Research Laboratory at the Institute for Sustainable Manufacturing, which performs research for the development of cutting edge brazing technologies.