Foreword |
|
xiii | |
|
|
Preface |
|
xvii | |
|
|
Contributing Authors |
|
xxiii | |
Dedication |
|
xxv | |
Chapter 1 Defect-Oriented Testing |
|
1 | (42) |
|
|
|
1.1 History of Defect-Oriented Testing |
|
|
2 | (2) |
|
1.2 Classic Defect Mechanisms |
|
|
4 | (4) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3 Defect Mechanisms in Advanced Technologies |
|
|
8 | (6) |
|
1.3.1 Copper-related Defects |
|
|
8 | (2) |
|
|
10 | (2) |
|
1.3.3 Design-related Defects |
|
|
12 | (2) |
|
|
14 | (14) |
|
1.4.1 Uses of Fault Models |
|
|
15 | (1) |
|
1.4.2 Single Stuck-at Faults |
|
|
16 | (1) |
|
|
17 | (5) |
|
|
22 | (2) |
|
1.4.5 Timing-related or Delay Faults |
|
|
24 | (3) |
|
|
27 | (1) |
|
1.5 Defect-Oriented Test Types |
|
|
28 | (6) |
|
|
28 | (1) |
|
1.5.2 Current-based Tests |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (5) |
|
1.6.1 Fault Coverage, Scan vs. Functional |
|
|
34 | (1) |
|
1.6.2 Effectiveness of IDDQ, Scan, At-speed Tests |
|
|
34 | (5) |
|
1.6.3 Statistical Post Processing |
|
|
39 | (1) |
|
1.7 Future Trends and Conclusions |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (3) |
Chapter 2 Failure Mechanisms and Testing in Nanometer Technologies |
|
43 | (34) |
|
by Jaume Segura, Charles Hawkins and Jerry Soden |
|
|
|
2.1 Scaling CMOS Technology |
|
|
44 | (33) |
|
|
45 | (6) |
|
2.1.2 Interconnect Scaling |
|
|
51 | (1) |
|
2.1.3 Parameter Variations |
|
|
52 | (3) |
|
|
55 | (2) |
|
2.2 Failure Modes in Nanometer Technologies |
|
|
57 | (8) |
|
|
57 | (3) |
|
2.2.2 Open Circuit Defects |
|
|
60 | (1) |
|
2.2.3 Parametric Failures |
|
|
61 | (4) |
|
2.3 Test Methods for Nanometer ICs |
|
|
65 | (8) |
|
2.3.1 Impact of Technology Scaling on Testing |
|
|
66 | (1) |
|
2.3.2 Dealing with Background Current Increase |
|
|
67 | (1) |
|
2.3.3 Noise-tolerant Techniques |
|
|
68 | (4) |
|
2.3.4 Impact of Variation on Delay |
|
|
72 | (1) |
|
|
|
|
73 | (4) |
Chapter 3 Silicon Debug |
|
77 | (32) |
|
by Doug Josephson and Bob Gottlieb |
|
|
|
|
77 | (2) |
|
3.2 Silicon Debug History |
|
|
79 | (1) |
|
3.3 Silicon Debug Process |
|
|
80 | (29) |
|
3.3.1 Post-silicon Validation |
|
|
80 | (2) |
|
|
82 | (1) |
|
3.4.1 Step 1: Control the Failure |
|
|
82 | (2) |
|
3.4.2 Step 2: Isolate the Failing Circuit |
|
|
84 | (5) |
|
3.4.3 Step 3: Root Cause the Failure |
|
|
89 | (2) |
|
3.4.4 Step 4: Try to Expand the Problem |
|
|
91 | (1) |
|
|
92 | (9) |
|
|
92 | (1) |
|
|
92 | (2) |
|
|
94 | (2) |
|
|
96 | (2) |
|
|
98 | (2) |
|
|
100 | (1) |
|
3.6 A Case Study in Silicon Debug |
|
|
101 | (4) |
|
3.7 Future Challenges for Silicon Debug |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (2) |
Chapter 4 Delay Testing |
|
109 | (32) |
|
|
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (6) |
|
4.2.1 Transition Delay Basics |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (5) |
|
|
116 | (1) |
|
|
116 | (2) |
|
4.3.3 System-Clock-Launch |
|
|
118 | (1) |
|
|
119 | (1) |
|
4.3.5 BIST and Delay Testing |
|
|
119 | (1) |
|
4.3.6 Philosophy and Delay Test Application |
|
|
120 | (1) |
|
|
121 | (4) |
|
4.4.1 Clock Domain Issues |
|
|
121 | (3) |
|
|
124 | (1) |
|
|
125 | (4) |
|
|
126 | (1) |
|
4.5.2 System-Clock-Launch |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (2) |
|
4.6 Chip Design Constructs |
|
|
129 | (3) |
|
4.6.1 Phase-Locked Loops (PLLs) |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
132 | (4) |
|
|
133 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
4.8 Conclusions: Tests vs. Defects |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (4) |
Chapter 5 High-Speed Digital Test Interfaces |
|
141 | (38) |
|
|
|
|
141 | (10) |
|
|
141 | (2) |
|
|
143 | (8) |
|
5.2 Technology and Design Techniques |
|
|
151 | (16) |
|
5.2.1 Parasitics Minimization |
|
|
151 | (3) |
|
|
154 | (3) |
|
5.2.3 Differential Signaling |
|
|
157 | (3) |
|
|
160 | (3) |
|
5.2.5 Power Supply and Decoupling |
|
|
163 | (4) |
|
5.3 Characterization and Modeling |
|
|
167 | (9) |
|
5.3.1 Characterization Techniques |
|
|
168 | (4) |
|
|
172 | (3) |
|
5.3.3 Power Distribution System Modeling |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (2) |
Chapter 6 DFT-Oriented, Low-Cost Testers |
|
179 | (38) |
|
by Al Crouch and Geir Eide |
|
|
|
|
180 | (4) |
|
6.1.1 Historical Perspective on Structural Test |
|
|
182 | (2) |
|
6.2 Test Cost – the Chicken and the Low Cost Tester |
|
|
184 | (4) |
|
6.2.1 Schedule, Work Product, and Time-to-Market |
|
|
184 | (2) |
|
6.2.2 Manufacturing Test Cost |
|
|
186 | (2) |
|
|
188 | (2) |
|
6.4 Why and When is DFT Low Cost? |
|
|
190 | (14) |
|
6.4.1 Functional vs. Structural Test |
|
|
190 | (1) |
|
6.4.2 Structural Test, DFT, and Cost |
|
|
191 | (3) |
|
6.4.3 Test Development Automation |
|
|
194 | (2) |
|
6.4.4 Defect Coverage and Fault Models |
|
|
196 | (3) |
|
6.4.5 DFT and First Silicon Validation |
|
|
199 | (2) |
|
6.4.6 DFT and Device Characterization |
|
|
201 | (2) |
|
6.4.7 DFT and Yield Learning |
|
|
203 | (1) |
|
6.5 What does Low Cost have to do with the Tester? |
|
|
204 | (9) |
|
6.5.1 What Makes a Tester Expensive? |
|
|
204 | (3) |
|
6.5.2 Achieving Test Goals Without Precision, Accuracy, Flexibility |
|
|
207 | (2) |
|
6.5.3 The Next Step in Test Cost Reduction – the Test Interface |
|
|
209 | (3) |
|
6.5.4 The LCST is Not the Silver Bullet |
|
|
212 | (1) |
|
6.6 Life, the Universe, and Everything |
|
|
213 | (2) |
|
|
215 | (1) |
|
|
216 | (1) |
Chapter 7 Embedded Cores and System-on-Chip Testing |
|
217 | (46) |
|
|
|
7.1 Embedded Cores and SOCs |
|
|
218 | (1) |
|
7.2 Design and Test Paradigm with Cores and SOCs |
|
|
219 | (3) |
|
7.2.1 Classification and Use of Embedded Cores |
|
|
219 | (1) |
|
7.2.2 Components of an SOC |
|
|
220 | (2) |
|
7.3 DFT for Embedded Cores and SOCs |
|
|
222 | (6) |
|
7.3.1 Conventional DFT Techniques |
|
|
222 | (1) |
|
7.3.2 DFT for Embedded Cores |
|
|
223 | (3) |
|
|
226 | (2) |
|
7.4 Test Access Mechanisms |
|
|
228 | (4) |
|
7.4.1 Test Interface Control Requirements |
|
|
228 | (1) |
|
7.4.2 1149.1 JTAG TAP Interface |
|
|
229 | (1) |
|
7.4.3 IEEE 1500 Standard Test Interface |
|
|
230 | (2) |
|
7.5 ATPG for Embedded Cores and SOCs |
|
|
232 | (4) |
|
7.5.1 Limitations of Conventional ATPG |
|
|
232 | (1) |
|
|
233 | (2) |
|
7.5.3 SOC Test Coverage Estimation |
|
|
235 | (1) |
|
|
236 | (5) |
|
|
236 | (1) |
|
7.6.2 Design and Categories of Test Modes |
|
|
237 | (2) |
|
7.6.3 Test Pin Requirements |
|
|
239 | (1) |
|
7.6.4 Test Mode Selection Mechanisms |
|
|
239 | (1) |
|
7.6.5 Examples of Complex Test Modes |
|
|
240 | (1) |
|
7.7 Design for At-speed Testing |
|
|
241 | (7) |
|
7.7.1 Need for At-speed Testing |
|
|
241 | (1) |
|
7.7.2 Requirements for SOC At-speed Test |
|
|
242 | (1) |
|
7.7.3 Functional Tests for At-speed Testing |
|
|
243 | (1) |
|
7.7.4 Scan Design and Scan Control |
|
|
244 | (1) |
|
7.7.5 Clock Control for At-speed Testing |
|
|
244 | (2) |
|
7.7.6 Handling Violating Paths |
|
|
246 | (1) |
|
7.7.7 Test Control Through I/Os |
|
|
247 | (1) |
|
7.7.8 Pattern Generation Techniques |
|
|
247 | (1) |
|
7.8 Design for Memory and Logic BIST |
|
|
248 | (9) |
|
|
248 | (1) |
|
7.8.2 Design Techniques for Memory BIST |
|
|
249 | (3) |
|
7.8.3 Design Techniques for Logic BIST |
|
|
252 | (3) |
|
|
255 | (2) |
|
7.8.5 SOC BIST Architecture |
|
|
257 | (1) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (4) |
Chapter 8 Embedded Memory Testing |
|
263 | (38) |
|
|
|
|
263 | (4) |
|
8.2 The Memory Design Under Test |
|
|
267 | (34) |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
272 | (2) |
|
8.2.4 Content Addressable Memories |
|
|
274 | (1) |
|
8.2.5 Dynamic Random Access Memories |
|
|
274 | (2) |
|
|
276 | (6) |
|
|
282 | (1) |
|
8.4.1 Pattern Nomenclature |
|
|
283 | (1) |
|
|
284 | (3) |
|
8.4.3 Memory Data Backgrounds |
|
|
287 | (2) |
|
|
289 | (1) |
|
|
290 | (5) |
|
8.6 Advanced Memories & Technologies |
|
|
295 | (3) |
|
|
298 | (1) |
|
|
298 | (3) |
Chapter 9 Mixed-Signal Testing and DfT |
|
301 | (36) |
|
|
|
|
302 | (8) |
|
9.1.1 Functional vs. Structural Test |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
307 | (3) |
|
|
310 | (11) |
|
|
311 | (7) |
|
|
318 | (2) |
|
|
320 | (1) |
|
9.3 Advances in the Last 10 Years |
|
|
321 | (8) |
|
|
322 | (1) |
|
|
323 | (6) |
|
|
329 | (1) |
|
9.4 Emerging Techniques and Directions |
|
|
329 | (2) |
|
|
330 | (1) |
|
|
330 | (1) |
|
9.5 EDA Tools for Mixed-Signal Testing |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
332 | (2) |
|
|
334 | (3) |
Chapter 10 RF Testing |
|
337 | (34) |
|
by Randy Wolf, Mustapha Slamani, John Ferrario and Jayendra Bhagat |
|
|
|
|
337 | (2) |
|
|
339 | (2) |
|
|
339 | (1) |
|
10.2.2 RF Test Challenges |
|
|
340 | (1) |
|
10.3 RF Test Cost Reduction Factors |
|
|
341 | (5) |
|
10.3.1 Resources and Test Time Cost |
|
|
342 | (2) |
|
|
344 | (2) |
|
|
346 | (10) |
|
10.4.1 Universal Test Board |
|
|
347 | (1) |
|
10.4.2 RF Test Function Sub-Circuit Design |
|
|
348 | (5) |
|
10.4.3 Complete Test Architecture |
|
|
353 | (3) |
|
10.5 Hardware Development Process |
|
|
356 | (3) |
|
10.6 High Frequency Simulation Tools |
|
|
359 | (8) |
|
10.6.1 Schematic Simulation |
|
|
359 | (3) |
|
10.6.2 2.5D RF Board Simulation |
|
|
362 | (3) |
|
10.6.3 3D RF Socket and Package Modeling |
|
|
365 | (2) |
|
10.7 Device Under Test Interface |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
368 | (3) |
Chapter 11 Loaded Board Testing |
|
371 | (36) |
|
|
|
11.1 The Defect Space at Board Test |
|
|
372 | (6) |
|
11.1.1 What is a "Defect"? |
|
|
372 | (1) |
|
11.1.2 What is a "Fault"? |
|
|
373 | (1) |
|
11.1.3 The "PCOLA/SOQ" Model |
|
|
374 | (2) |
|
|
376 | (2) |
|
11.2 In-Circuit Test (ICT) |
|
|
378 | (21) |
|
11.2.1 Unpowered Shorts Tests |
|
|
380 | (4) |
|
11.2.2 Unpowered Analog Tests |
|
|
384 | (7) |
|
11.2.3 Powered In-Circuit Digital Tests |
|
|
391 | (3) |
|
11.2.4 Boundary-Scan Tests |
|
|
394 | (3) |
|
11.2.5 Powered Mixed-Signal Tests |
|
|
397 | (1) |
|
11.2.6 Pros and Cons of ICT |
|
|
398 | (1) |
|
11.3 Loaded Board Inspection Systems |
|
|
399 | (6) |
|
11.3.1 Automatic Optical Inspection (A0I) |
|
|
400 | (2) |
|
11.3.2 Automatic X-Ray Inspection (AXI) |
|
|
402 | (2) |
|
11.3.3 Pros and Cons of Inspection |
|
|
404 | (1) |
|
11.4 The Future of Board Test |
|
|
405 | (1) |
|
|
406 | (1) |
Index |
|
407 | |