Muutke küpsiste eelistusi

E-raamat: Advances in Heat Transfer

Series edited by (University of Illinois, Chicago, U.S.A.), Series edited by (Drexel University, USA), Series edited by (Brookhaven National Laboratory, Upton, New York, U.S.A.), Series edited by (State University of New York at Stonybrook, U.S.A.)
  • Formaat: EPUB+DRM
  • Sari: Advances in Heat Transfer
  • Ilmumisaeg: 09-Jun-1998
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080575858
  • Formaat - EPUB+DRM
  • Hind: 184,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Advances in Heat Transfer
  • Ilmumisaeg: 09-Jun-1998
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080575858

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts.

Arvustused

"Wholeheartedly recommended to the researcher, and to the student who wishes to commence work in a particular field." --JOURNAL OF MECHANICAL WORKING TECHNOLOGY

"Serve[ s] as a broad review for experts in the field...Will also be of great interest to non-specialists with only a general knowledge of the field who need to know the results of the latest research." --CURRENT SCIENCE

Contributors x Coupled Transport in Multiphase Systems: A Theory of Drying Stephen Whitker Introduction 1(5) Basic Equations 6(5) Mass 6(1) Momentum 7(2) Energy 9(1) Thermodynamic Relations 10(1) Volume Averaging 11(12) Superficial and Instrinsic Averages 11(2) Spatial Averaging Theorem 13(1) General Transport Theorem 14(1) Spatial Deviation Variables 15(1) Length-Scale Constraints 16(7) Governing Point Equations and Boundary Conditions 23(5) Solid Phase 23(1) Liquid Phase 24(1) Gas Phase 24(2) Liquid--Solid Interface 26(1) Solid--Gas Interface 26(1) Gas--Liquid Interface 26(2) Boundary of the Macroscopic System 28(1) Volume-Averaged Transport Equations: Mass 28(11) Solid Phase 28(1) Liquid Phase 28(2) Gas Phase: Total 30(1) Gas Phase: Water Vapor 31(8) Volume-Averaged Transport Equations: Momentum 39(2) Volume-Averaged Transport Equations: Energy 41(7) Solid Phase 41(2) Liquid Phase 43(3) Gas Phase 46(2) Thermodynamic Relations and Local Mass Equilibrium 48(5) Ideal Gas Law 49(1) Clausius--Clapeyron--Kelvin Equation 50(2) Local Mass Equilibrium 52(1) Local Thermal Equilibrium 53(3) Closure: Mass 56(4) Solid Phase 56(1) Liquid Phase 57(1) Gas Phase 57(2) Boundary Conditions 59(1) Closure: Energy 60(8) Solid Phase 61(2) Liquid Phase 63(2) Gas Phase 65(1) Boundary Conditions 65(3) Coupled Closure Problem 68(17) Gas-Phase Diffusion Closure Problem 68(4) Thermal Energy Closure Problem 72(3) Coupled Closure Problem 75(1) Closure Variables 76(4) Passive--Active Decomposition 80(2) Order of Magnitude Estimates 82(3) A Diffusion Theory of Drying 85(14) Gas-Phase Mass Transfer 85(4) Energy Transport Equation 89(6) Moisture Transport Equation 95(4) Conclusions 99(6) Acknowledgment 100(1) Nomenclature 100(2) References 102(3) Integral Methods for Two-Phase Flow in Hydraulic Systems Wolfgang Wulff Importance of Two-Phase Flow 105(1) Methods Currently Used and the Need for Alternative Methods of Two-Phase Flow Analysis 106(2) The Selection of Two-Phase Models 108(5) Two-Phase flow and Drift-Flux Parameters 109(2) Conservation Equations 111(2) Integral Methods 113(32) Mass Balance and Flux Divergence Equations 114(7) Global Momentum Balance 121(5) Flow Distribution in Loop Systems 126(7) Flow Inertia 133(1) Flow Resistance (Impedance) 133(3) Vapor Mass and Mixture Energy Balance Equations 136(7) Heat Transfer in Solid Structures 143(2) Global Balance Equations for Thermohydraulic Systems 145(7) Pressurized Systems and System Mechanical Compliance 146(1) Flow Systems and the Matrices of Flow Impedance and Flow Inertia 147(2) Global Scaling Criteria for Integral Systems 149(3) Conclusions: Importance of Integral Methods 152(7) Nomenclature 153(2) References 155(4) Heat Transfer Enhancement in Heart Exchangers E. K. Kalinin G. A. Dreitser Introduction 159(2) Choice of Heat Transfer Enhancement Method 161(26) Conditions Governing the Choice of the Method 162(4) Separated Flow Regions as a Means for Goal-Directed Additional Flow Turbulization 166(12) Analysis of Different Heat Transfer Enhancement Methods 178(4) Choice of a Rational Method for Heat Transfer Enhancement in Straight Channels and in Longitudinal Flow around tube Bundles 182(3) Regular Trends in Heat Transfer Variations on the Channel Walls with Discrete Flow Turbulization 185(2) Heat Transfer Enhancement in Tubes 187(45) Heat Transfer Enhancement in the Turbulent Flow Transition Region 187(9) Theoretical Methods of Predicting Heat Transfer Enhancement in Turbulent Flow 196(1) Influence of the Reynolds Number 197(11) Influence of the Prandtl Number 208(5) Influence of the Turbulator Shape 213(6) Influence of Diaphragm Height and Pitch 219(6) Influence of the Temperature Factor under Artificial Flow Turbulization Conditions 225(3) Heat Transfer Enhancement with Supercritical Hydrocarbon Flow in Tubes 228(4) Heat Transfer Enhancement in Tube Bundles in Longitudinal Flow and Annular Channels 232(27) Heat Transfer Enhancement due to Transverse Annular Grooves in Tube Bundles in Longitudinal Flow 232(9) Heat Transfer Enhancement in Annular Channels Incorporating an Inner Grooved Tube 241(4) Heat Transfer Enhancement due to Transverse Finning in Annular Channels 245(4) Heat Transfer Enhancement due to Transverse Fins in Tube Bundles in Longitudinal Flow 249(4) Heat Transfer Enhancement in Annular Channels with One-Sided Combined Turbulators of the ``Protrusion-Groove Type 253(6) Heat Transfer Enhancement in Flat and Triangular Channels 259(4) Heat Transfer Enhancement in Flat Channels due to Transverse Finning 259(2) Heat Transfer Enhancement in Triangular Channels 261(2) Heat Transfer Enhancement in Transverse Flow Past Annular Turbulator--Equipped Tubes 263(1) Boiling Heat Transfer Enhancements in Channels 264(11) Heat Transfer Enhancement Methods 264(2) Dispersed Film Boiling Heat Transfer Enhancement 266(3) Heat Transfer Enhancement in the Slug Film Boiling Regime 269(2) Heat Transfer Enhancement at Water Surface Boiling in Tubes 271(4) Enhancement of Condensation Heat Transfer 275(19) Means for Condensation Heat Transfer Enhancement 275(3) Heat Transfer Enhancement with Vapor Condensation on Horizontal Annular-Grooved Tubes 278(4) Heat Transfer Enhancement with Vapor Condensation on the Outer Surface of Vertical Annular-Grooved Tubes 282(5) Heat Transfer Enhancement with Condensation of Vapor Mixtures on Vertical Surfaces 287(5) Heat Transfer Enhancement with Vapor Condensation from a Vapor--Air Mixture on Vertical Tubes 292(1) Heat Transfer Enhancement with Condensation Vapor Mixture on Horizontal tubes 293(1) Heat Transfer Enhancement at Fouling on Tube Surfaces 294(10) Model for Salt Deposition with Cold Water Flow Past Annular Turbulator--Equipped Tubes 294(2) Experiment Setup and Methods 296(3) Salt Deposition on the Outer Surface of Annular Groove-Provided Tubes 299(2) Salt Deposition on the Inner Surface of Annular Diaphragm--Equipped and Helical Tubes 301(3) Methods of Calculating Effective Heat Transfer Surfaces 304(30) Evaluating the Efficiency of Heat Transfer Enhancement 305(6) General Recommendations on the Choice of a Means for Heat Transfer Enhancement in Channels 311(2) Calculation of Heat Transfer and Hydraulic Resistance in Annular Turbulator--Provided Tubes 313(7) Acknowledgments 320(1) Nomenclature 320(2) References 322(11) Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media Jeffery T. Farmer John R. Howell Abstract 333(1) Introduction 334(2) Geometric Modeling and Ray Tracing 336(28) Modeling Approach 336(7) Algorithms for Monte Carlo Calculation 343(1) Forward Approaches 344(2) Reverse Approaches 346(2) Numerical Comparisons 348(16) Treatment of Realistic Property Dependencies 364(36) Anisotropic and Isotropic Scattering 364(9) Inhomogeneous Properties 373(15) Spectrally Dependent Properties 388(12) Strategies for High-Performance Computers 400(21) Parallel Computers 400(5) Parallel Programming Approaches 405(2) Parallelization of the Monte Carlo Ray-Tracing Algorithms 407(6) Parallel Processing Example: Individual-Ray SPMD 413(8) Summary and Conclusions 421(10) References 425(6) Mitigation of Water Fouling: Technology Status and Challenges C. B. Panchal J. G. Knudsen Introduction 431(4) Fouling Mechanisms 435(11) Biofouling 435(4) Crystallization Fouling 439(2) Particulate Fouling 441(2) Corrosion Fouling 443(1) Interactive Effects 444(2) Mitigation Methods 446(17) Chemical Methods 447(3) Process Conditions 450(2) Physical Devices 452(1) Enhanced Surfaces 453(5) Alternative Devices 458(5) Challenges 463(6) Information Technology 463(1) Design Standards 464(3) Perdiction Methods 467(2) Environmental Regulations 469(1) Summary 469(6) Acknowledgments 470(1) Nomenclature 470(1) References 470(5) Index 475