Muutke küpsiste eelistusi

E-raamat: Advances in Machine Learning and Data Mining for Astronomy

Edited by (NASA Goddard Institute for Space Studies, New York, New York, USA), Edited by (Verizon, California, USA), Edited by (Metric Avenue, San Francisco, California, USA), Edited by (NASA Ames Research Center, Moffett Field, California, USA)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 61,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science.

The books introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications.

With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.

Arvustused

"The volume is a well-organised collection of articles presenting the importance of modern data mining and machine learning techniques in application to analysis of astronomical data. A major strength of the volume is its very impressive collection of real examples that can be both inspirational and educational. The book is particularly successful in showing how collaboration between computer scientists and statisticians on one side and astronomers on the other is needed to search for a scientific discovery in the abundance of data generated by instrumentation and simulations." Krzysztof Podgorski, International Statistical Review, 2014

Foreword ix
Editors xi
Perspective xiii
Contributors xxv
Part I Foundational Issues
Chapter 1 Classification in Astronomy: Past and Present
3(8)
Eric Feigelson
Chapter 2 Searching the Heavens: Astronomy, Computation, Statistics, Data Mining, and Philosophy
11(16)
Clark Glymour
Chapter 3 Probability and Statistics in Astronomical Machine Learning and Data Mining
27(14)
Jeffrey D. Scargle
Part II Astronomical Applications
Section 1 Source Identification
Chapter 4 Automated Science Processing for the Fermi Large Area Telescope
41(14)
James Chiang
Chapter 5 Cosmic Microwave Background Data Analysis
55(34)
Paniez Paykari
Jean-Luc Starck
Chapter 6 Data Mining and Machine Learning in Time-Domain Discovery and Classification
89(24)
Joshua S. Bloom
Joseph W. Richards
Chapter 7 Cross-Identification of Sources: Theory and Practice
113(20)
Tamas Budavari
Chapter 8 The Sky Pixelization for Cosmic Microwave Background Mapping
133(28)
O.V. Verkhodanov
A.G. Doroshkevich
Chapter 9 Future Sky Surveys: New Discovery Frontiers
161(22)
J. Anthony Tyson
Kirk D. Borne
Chapter 10 Poisson Noise Removal in Spherical Multichannel Images: Application to Fermi Data
183(30)
Jeremy Schmitt
Jean-Luc Starck
Jalal Fadili
Seth Digel
Section 2 Classification
Chapter 11 Galaxy Zoo: Morphological Classification and Citizen Science
213(24)
Lucy Fortson
Karen Masters
Robert Nichol
Kirk D. Borne
Edward M. Edmondson
Chris Lintott
Jordan Raddick
Kevin Schawinski
John Wallin
Chapter 12 The Utilization of Classifications in High-Energy Astrophysics Experiments
237(30)
Bill Atwood
Chapter 13 Database-Driven Analyses of Astronomical Spectra
267(20)
Jan Cami
Chapter 14 Weak Gravitational Lensing
287(36)
Sandrine Pires
Jean-Luc Starck
Adrienne Leonard
Alexandre Refregier
Chapter 15 Photometric Redshifts: 50 Years After
323(14)
Tamas Budavari
Chapter 16 Galaxy Clusters
337(18)
Christopher J. Miller
Section 3 Signal Processing (Time-Series) Analysis
Chapter 17 Planet Detection: The Kepler Mission
355(28)
Jon M. Jenkins
Jeffrey C. Smith
Peter Tenenbaum
Joseph D. Twicken
Jeffrey Van Cleve
Chapter 18 Classification of Variable Objects in Massive Sky Monitoring Surveys
383(24)
Przemek Wozniak
Lukasz Wyrzykowski
Vasily Belokurov
Chapter 19 Gravitational Wave Astronomy
407(40)
Lee Samuel Finn
Section 4 The Largest Data Sets
Chapter 20 Virtual Observatory and Distributed Data Mining
447(16)
Kirk D. Borne
Chapter 21 Multitree Algorithms for Large-Scale Astrostatistics
463(24)
William B. March
Arkadas Ozakin
Dongryeol Lee
Ryan Riegel
Alexander G. Gray
Part III Machine Learning Methods
Chapter 22 Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates
487(18)
Pierre Borgnat
Patrick Flandrin
Cedric Richard
Andre Ferrari
Hassan Amoud
Paul Honeine
Chapter 23 Classification
505(18)
Nikunj Oza
Chapter 24 On the Shoulders of Gauss, Bessel, and Poisson: Links, Chunks, Spheres, and Conditional Models
523(20)
William D. Heavlin
Chapter 25 Data Clustering
543(20)
Kiri L. Wagstaff
Chapter 26 Ensemble Methods: A Review
563(32)
Matteo Re
Giorgio Valentini
Chapter 27 Parallel and Distributed Data Mining for Astronomy Applications
595(22)
Kamalika Das
Kanishka Bhaduri
Chapter 28 Pattern Recognition in Time Series
617(30)
Jessica Lin
Sheri Williamson
Kirk D. Borne
David DeBarr
Chapter 29 Randomized Algorithms for Matrices and Data
647(26)
Michael W. Mahoney
Index 673
Michael J. Way, PhD, is a research scientist at the NASA Goddard Institute for Space Studies in New York and the NASA Ames Research Center in California. He is also an adjunct professor in the Department of Physics and Astronomy at Hunter College. His research focuses on understanding the multiscale structure of our universe, modeling the atmospheres of exoplanets, and applying kernel methods to new areas in astronomy.

Jeffrey D. Scargle, PhD, is an astrophysicist in the Space Science and Astrobiology Division of the NASA Ames Research Center. His main interests encompass the variability of astronomical objects, including the Sun, sources in the Galaxy, and active galactic nuclei; cosmology; plasma astrophysics; planetary detection; and data analysis and statistical methods.

Kamal M. Ali, PhD, is a research scientist in machine learning and data mining. He has a consulting practice and is cofounder of the start-up Metric Avenue. He has carried out research at IBM Almaden, Stanford University, Vividence, Yahoo, and TiVo, where he worked on the Tivo Collaborative Filtering Engine. His current research focuses on combining machine learning in conditional random fields with linguistically rich features to make machines better at reading web pages.

Ashok N. Srivastava, PhD, is the principal scientist for Data Mining and Systems Health Management and leader of the Intelligent Data Understanding group at NASA Ames Research Center. His research includes the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms.