Muutke küpsiste eelistusi

E-raamat: Advances in Metaheuristic Algorithms for Optimal Design of Structures

  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319461731
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 09-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319461731

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm.The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite el

ement models, but can equally be utilized for optimal design of other systems such as hydraulic and electrical networks.In the second edition seven new chapters are added consisting of the new developments in the field of optimization. These chapters consist of the Enhanced Colliding Bodies Optimization, Global Sensitivity Analysis, Tug of War Optimization, Water Evaporation Optimization, Vibrating Particle System Optimization and Cyclical Parthenogenesis Optimization algorithms. A chapter is also devoted to optimal design of large scale structures.

Introduction.- Particle Swarm Optimization.- Charged System Search Algorithm.- Magnetic Charged System Search.- Field of Forces Optimization.- Dolphin Echolocation Optimization.- Colliding Bodies Optimization.- Ray Optimization Algorithm.- Modified Big Bang-Big Crunch Algorithm.- Cuckoo Search Optimization.- Imperialist Competitive Algorithm.- Chaos Embedded Metaheuristic Algorithms.- Enhanced Colliding Bodies Optimization.- Global Sensitivity Analysis-Based Optimization Algorithm.- Tug of War Optimization.- Water Evaporation Optimization Algorithm.- Vibrating Particles System Algorithm.- Cyclical Parthenogenesis Optimization Algorithm.- Optimal Design of large-scale Frame Structures.- Multi-Objective Optimization of Truss Structures.

Arvustused

This is a second edition of a book presenting a large collection of optimization algorithms and techniques. It is written in a clean and easily comprehensible . it is beneficial reading for post-docs and researchers interested in metaheuristic approaches to optimization problems. Second edition also contain various presentation improvements, newly added graphs and flow diagrams and is rich in examples. (Vladimír Lacko, zbMATH 1359.90001, 2017)

1 Introduction 1(10)
1.1 Metaheuristic Algorithms for Optimization
1(1)
1.2 Optimal Design of Structures and Goals of the Present Book
2(3)
1.3 Organization of the Present Book
5(5)
References
10(1)
2 Particle Swarm Optimization 11(34)
2.1 Introduction
11(1)
2.2 PSO Algorithm
12(9)
2.2.1 Development
12(3)
2.2.2 PSO Algorithm
15(1)
2.2.3 Parameters
15(2)
2.2.4 Premature Convergence
17(2)
2.2.5 Topology
19(1)
2.2.6 Biases
20(1)
2.3 Hybrid Algorithms
21(1)
2.4 Discrete PSO
22(1)
2.5 Democratic PSO for Structural Optimization
23(17)
2.5.1 Description of the Democratic PSO
23(2)
2.5.2 Truss Layout and Size Optimization with Frequency Constraints
25(1)
2.5.3 Numerical Examples
26(14)
References
40(5)
3 Charged System Search Algorithm 45(46)
3.1 Introduction
45(1)
3.2 Charged System Search
45(11)
3.2.1 Background
45(4)
3.2.2 Presentation of Charged Search System
49(7)
3.3 Validation of CSS
56(8)
3.3.1 Description of the Examples
57(1)
3.3.2 Results
57(7)
3.4 Charged System Search for Structural Optimization
64(6)
3.4.1 Statement of the Optimization Design Problem
64(6)
3.4.2 CSS Algorithm-Based Structural Optimization Procedure
70(1)
3.5 Numerical Examples
70(16)
3.5.1 A Benchmark Truss
72(4)
3.5.2 A 120-Bar Dome Truss
76(3)
3.5.3 A 26-Story-Tower Space Truss
79(2)
3.5.4 An Unbraced Space Frame
81(3)
3.5.5 A Braced Space Frame
84(2)
3.6 Discussion
86(2)
3.6.1 Efficiency of the CSS Rules
86(2)
3.6.2 Comparison of the PSO and CSS
88(1)
3.6.3 Efficiency of the CSS
88(1)
References
88(3)
4 Magnetic Charged System Search 91(48)
4.1 Introduction
91(1)
4.2 Magnetic Charged System Search Method
91(27)
4.2.1 Magnetic Laws
92(2)
4.2.2 A Brief Introduction to Charged System Search Algorithm
94(2)
4.2.3 Magnetic Charged System Search Algorithm
96(6)
4.2.4 Numerical Examples
102(10)
4.2.5 Engineering Examples
112(6)
4.3 Improved Magnetic Charged System Search
118(19)
4.3.1 A Discrete IMCSS
119(1)
4.3.2 An Improved Magnetic Charged System Search for Optimization of Truss Structures with Continuous and Discrete Variables
120(17)
References
137(2)
5 Field of Forces Optimization 139(22)
5.1 Introduction
139(1)
5.2 Formulation of the Configuration Optimization Problems
140(1)
5.3 Fundamental Concepts of the Fields of Forces
140(2)
5.4 Necessary Definitions for a FOF-Based Model
142(1)
5.5 An FOF-Based General Method
143(1)
5.6 An Enhanced Charged System Search Algorithm for Configuration Optimization
144(3)
5.6.1 Review of the Charged System Search Algorithm
144(2)
5.6.2 An Enhanced Charged System Search Algorithm
146(1)
5.7 Design Examples
147(7)
5.7.1 18-Bar Planar Truss
147(2)
5.7.2 25-Bar Spatial Truss
149(3)
5.7.3 120-Bar Dome Truss
152(2)
5.8 Discussion
154(5)
References
159(2)
6 Dolphin Echolocation Optimization 161(38)
6.1 Introduction
161(1)
6.2 Dolphin Echolocation in Nature
161(1)
6.3 Dolphin Echolocation Optimization
162(11)
6.3.1 Introduction to Dolphin Echolocation
162(1)
6.3.2 Dolphin Echolocation Algorithm
163(10)
6.4 Structural Optimization
173(1)
6.5 Numerical Examples
173(24)
6.5.1 Truss Structures
173(24)
References
197(2)
7 Colliding Bodies Optimization 199(38)
7.1 Introduction
199(1)
7.2 Colliding Bodies Optimization
199(18)
7.2.1 The Collision Between Two Bodies
200(1)
7.2.2 The CBO Algorithm
201(5)
7.2.3 Test Problems and Optimization Results
206(11)
7.3 CBO for Optimum Design of Truss Structures with Continuous Variables
217(18)
7.3.1 Flowchart and CBO Algorithm
218(1)
7.3.2 Numerical Examples
219(15)
7.3.3 Discussion
234(1)
References
235(2)
8 Ray Optimization Algorithm 237(44)
8.1 Introduction
237(1)
8.2 Ray Optimization for Continuous Variables
238(17)
8.2.1 Definitions and Concepts from Ray Theory
238(4)
8.2.2 Ray Optimization Method
242(5)
8.2.3 Validation of the Ray Optimization
247(8)
8.3 Ray Optimization for Size and Shape Optimization of Truss Structures
255(10)
8.3.1 Formulation
255(2)
8.3.2 Design Examples
257(8)
8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures
265(14)
8.4.1 Introduction
265(2)
8.4.2 Improved Ray Optimization Algorithm
267(2)
8.4.3 Mathematical and Structural Design Examples
269(10)
References
279(2)
9 Modified Big Bang-Big Crunch Algorithm 281(40)
9.1 Introduction
281(1)
9.2 MBB-BC Method
281(5)
9.2.1 Introduction to BB-BC Method
281(3)
9.2.2 A Modified BB-BC Algorithm
284(2)
9.3 Size Optimization of Space Trusses Using a MBB-BC Algorithm
286(16)
9.3.1 Formulation
286(2)
9.3.2 Design Examples
288(14)
9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB-BC Algorithm
302(16)
9.4.1 Introduction
302(2)
9.4.2 Dome Structure Optimization Problems
304(3)
9.4.3 Pseudo Code of the Modified Big Bang-Big Crunch Algorithm
307(1)
9.4.4 Elastic Critical Load Analysis of Spatial Structures
308(1)
9.4.5 Configuration of Schwedler and Ribbed Domes
309(4)
9.4.6 Results and Discussion
313(5)
9.5 Concluding Remarks
318(1)
References
319(2)
10 Cuckoo Search Optimization 321(32)
10.1 Introduction
321(1)
10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with Levy Flights
322(17)
10.2.1 Formulation
322(1)
10.2.2 Levy Flights as Random Walks
323(1)
10.2.3 Cuckoo Search Algorithm
324(2)
10.2.4 Optimum Design of Truss Structures Using Cuckoo Search Algorithm
326(2)
10.2.5 Design Examples
328(10)
10.2.6 Discussions
338(1)
10.3 Optimum Design of Steel Frames
339(12)
10.3.1 Optimum Design of Planar Frames
339(2)
10.3.2 Optimum Design of Steel Frames Using Cuckoo Search Algorithm
341(1)
10.3.3 Design Examples
342(8)
10.3.4 Discussions
350(1)
References
351(2)
11 Imperialist Competitive Algorithm 353(22)
11.1 Introduction
353(1)
11.2 Optimum Design of Skeletal Structures
354(3)
11.2.1 Constraints for Truss Structures
355(1)
11.2.2 Constraints for Steel Frames
355(2)
11.3 Imperialist Competitive Algorithm
357(4)
11.4 Design Examples
361(11)
11.4.1 Design of a 120-Bar Dome-Shaped Truss
361(2)
11.4.2 Design of a 72-Bar Spatial Truss
363(4)
11.4.3 Design of a 3-Bay 15-Story Frame
367(1)
11.4.4 Design of a 3-Bay 24-Story Frame
367(5)
11.5 Discussions
372(1)
References
373(2)
12 Chaos Embedded Metaheuristic Algorithms 375(24)
12.1 Introduction
375(1)
12.2 An Overview of Chaotic Systems
376(5)
12.2.1 Logistic Map
379(1)
12.2.2 Tent Map
379(1)
12.2.3 Sinusoidal Map
379(1)
12.2.4 Gauss Map
380(1)
12.2.5 Circle Map
380(1)
12.2.6 Sinus Map
380(1)
12.2.7 Henon Map
380(1)
12.2.8 Ikeda Map
381(1)
12.2.9 Zaslayskii Map
381(1)
12.3 Use of Chaotic Systems in Metaheuristics
381(1)
12.4 Chaotic Update of Internal Parameters for Metaheuristics
382(4)
12.5 Chaotic Search Strategy in Metaheuristics
386(1)
12.6 A New Combination of Metaheuristics and Chaos Theory
387(9)
12.6.1 The Original PSO
388(1)
12.6.2 The CPVPSO Phase
389(1)
12.6.3 The CLSPSO Phase
390(1)
12.6.4 Design Examples
391(5)
12.7 Concluding Remarks
396(1)
References
397(2)
13 Enhanced Colliding Bodies Optimization 399(28)
13.1 Introduction
399(1)
13.2 Structural Optimization
399(2)
13.3 An Enhanced Colliding Bodies Optimization (ECBO)
401(4)
13.3.1 A Brief Explanation of the CBO Algorithm
401(2)
13.3.2 The ECBO Algorithm
403(2)
13.4 Mathematical Optimization Problems
405(1)
13.5 Design Examples
405(18)
13.5.1 A 25-Bar Space Truss
409(2)
13.5.2 A 72-Bar Space Truss
411(2)
13.5.3 A 582-Bar Tower Truss
413(2)
13.5.4 A 3-Bay 15-Story Frame
415(2)
13.5.5 A 3-Bay 24-Story Frame
417(6)
13.6 Concluding Remarks
423(1)
References
424(3)
14 Global Sensitivity Analysis-Based Optimization Algorithm 427(24)
14.1 Introduction
427(1)
14.2 Background Study
428(1)
14.2.1 Variance-Based Sensitivity Indices
428(1)
14.2.2 The Variance-Based Sensitivity Analysis Using Space-Partition Method
428(1)
14.3 A Global Sensitivity Analysis-Based Algorithm
429(4)
14.3.1 Methodology
430(3)
14.4 Numerical Examples
433(13)
14.4.1 Design of a Tension/Compression Spring
433(5)
14.4.2 A Constrained Function
438(1)
14.4.3 A Planar 17-Bar Truss Problem
439(1)
14.4.4 A 72-Bar Spatial Truss Structure
440(4)
14.4.5 A 120-Bar Truss Dome
444(2)
14.5 Concluding Remarks
446(1)
References
447(4)
15 Tug of War Optimization 451(38)
15.1 Introduction
451(1)
15.2 Tug of War Optimization Method
451(5)
15.2.1 Idealized Tug of War Framework
451(2)
15.2.2 Tug of War Optimization Algorithm
453(3)
15.3 Mathematical and Engineering Design Problems
456(7)
15.3.1 Mathematical Optimization Problems
457(1)
15.3.2 Engineering Design Problems
457(6)
15.4 Structural Optimization Problems
463(19)
15.4.1 Truss Weight Optimization with Static Constraints
464(9)
15.4.2 Truss Weight Optimization with Dynamic Constraints
473(9)
15.5 Concluding Remarks
482(4)
References
486(3)
16 Water Evaporation Optimization Algorithm 489(22)
16.1 Introduction
489(1)
16.2 Basic Water Evaporation Optimization Algorithm
490(4)
16.3 Water Evaporation Optimization with Mixed Phases
494(4)
16.4 Test Problems and Optimization Results
498(8)
16.4.1 A Spatial 25-Bar Tower Truss
499(2)
16.4.2 A Spatial 72-Bar Truss
501(2)
16.4.3 A 3-Bay 15-Story Frame
503(3)
16.4.4 A 3-Bay 24-Story Frame
506(1)
16.5 Concluding Remarks
506(3)
References
509(2)
17 Vibrating Particles System Algorithm 511(30)
17.1 Introduction
511(1)
17.2 Formulation of the Structural Optimization Problems
512(1)
17.3 The Damped Free Vibration
512(3)
17.4 A New Metaheuristic Algorithm Based on the Vibrating Particles System
515(2)
17.5 Search Behavior of the Vibrating Particles System Algorithm
517(3)
17.6 Test Problems and Optimization Results
520(17)
17.6.1 A Spatial 120-Bar Dome-Shaped Truss
520(4)
17.6.2 A 200-Bar Planar Truss
524(4)
17.6.3 A 3-Bay 15-Story Frame Structure
528(3)
17.6.4 A 3-Bay 24-Story Frame Structure
531(6)
17.7 Concluding Remarks
537(1)
References
537(4)
18 Cyclical Parthenogenesis Optimization Algorithm 541(32)
18.1 Introduction
541(1)
18.2 Cyclical Parthenogenesis Algorithm
542(3)
18.2.1 Aphids and Cyclical Parthenogenesis
542(1)
18.2.2 Description of Cyclical Parthenogenesis Algorithm
543(2)
18.3 Sensitivity Analysis of CPA
545(7)
18.4 Test Problems and Optimization Results
552(19)
18.4.1 Mathematical Optimization Problems
553(3)
18.4.2 Truss Design Problems
556(15)
18.5 Concluding Remarks
571(1)
References
571(2)
19 Optimal Design of Large-Scale Frame Structures 573(30)
19.1 Introduction
573(2)
19.2 Code-Based Design Optimization of Steel Frames
575(3)
19.3 Cascade Sizing Optimization Utilizing a Series of Design Variable Configurations
578(3)
19.3.1 Cascade Optimization Strategy
578(1)
19.3.2 Multi-DVC Cascade Optimization
579(2)
19.4 Colliding Bodies Optimization and Its Enhanced Version
581(5)
19.4.1 A Brief Explanation of the CBO Algorithm
581(2)
19.4.2 The ECBO Algorithm
583(3)
19.5 Numerical Examples
586(15)
19.5.1 A 1860-Member Steel Space Frame
587(3)
19.5.2 A 3590-Member Steel Space Frame
590(4)
19.5.3 A 3328-Member Steel Space Frame
594(7)
19.6 Concluding Remarks
601(1)
References
601(2)
20 Multi-Objective Optimization of Truss Structures 603
20.1 Introduction
603(1)
20.2 Multi-Objective Optimization Concepts
604(1)
20.3 Charged System Search Algorithm
605(2)
20.4 Multi-Objective Charged System Search Optimization Algorithm
607(4)
20.4.1 Algorithm
607(4)
20.5 Multi-Criteria Decision Making
611(1)
20.6 Numerical Examples
612(13)
20.6.1 Design of a 2-Bar Truss
613(1)
20.6.2 Design of an I-Beam
614(2)
20.6.3 Design of a Welded Beam
616(2)
20.6.4 Design of a 25-Bar Truss
618(2)
20.6.5 Design of a 56-Bar
620(2)
20.6.6 Design of a 272-Bar Transmission Tower
622(3)
20.7 Concluding Remarks
625(5)
References
630