Muutke küpsiste eelistusi

E-raamat: Advances in Minimum Description Length: Theory and Applications

Edited by , Edited by , Edited by (Centrum voor Wiskunde en Informatica)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 78,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A source book for state-of-the-art MDL, including an extensive tutorial and recent theoretical advances and practical applications in fields ranging from bioinformatics to psychology.

The process of inductive inference—to infer general laws and principles from particular instances—is the basis of statistical modeling, pattern recognition, and machine learning. The Minimum Descriptive Length (MDL) principle, a powerful method of inductive inference, holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data—that the more we are able to compress the data, the more we learn about the regularities underlying the data. Advances in Minimum Description Length is a sourcebook that will introduce the scientific community to the foundations of MDL, recent theoretical advances, and practical applications.

The book begins with an extensive tutorial on MDL, covering its theoretical underpinnings, practical implications as well as its various interpretations, and its underlying philosophy. The tutorial includes a brief history of MDL—from its roots in the notion of Kolmogorov complexity to the beginning of MDL proper. The book then presents recent theoretical advances, introducing modern MDL methods in a way that is accessible to readers from many different scientific fields. The book concludes with examples of how to apply MDL in research settings that range from bioinformatics and machine learning to psychology.
Series Foreword vii
Preface ix
I Introductory
Chapters
1(174)
Introducing the Minimum Description Length Principle
3(20)
Peter Grunwald
Minimum Description Length Tutorial
23(58)
Peter Grunwald
MDL, Bayesian Inference, and the Geometry of the Space of Probability Distributions
81(18)
Vijay Balasubramanian
Hypothesis Testing for Poisson vs. Geometric Distributions Using Stochastic Complexity
99(26)
Aaron D. Lanterman
Applications of MDL to Selected Families of Models
125(26)
Andrew J. Hanson
Philip Chi-Wing Fu
Algorithmic Statistics and Kolmogorov's Structure Functions
151(24)
Paul Vitanyi
II Theoretical Advances
175(88)
Exact Minimax Predictive Density Estimation and MDL
177(18)
Feng Liang
Andrew Barron
The Contribution of Parameters to Stochastic Complexity
195(20)
Dean P. Foster
Robert A. Stine
Extended Stochastic Complexity and Its Applications to Learning
215(30)
Kenji Yamanishi
Kolmogorov's Structure Function in MDL Theory and Lossy Data Compression
245(18)
Jorma Rissanen
Ioan Tabus
III Practical Applications
263(172)
Minimum Message Length and Generalized Bayesian Nets with Asymmetric Languages
265(30)
Joshua W. Comley
David L. Dowe
Simultaneous Clustering and Subset Selection via MDL
295(28)
Rebecka Jornsten
Bin Yu
An MDL Framework for Data Clustering
323(32)
Petri Kontkanen
Petri Myllymaki
Wray Buntine
Jorma Rissanen
Henry Tirri
Minimum Description Length and Psychological Clustering Models
355(30)
Michael D. Lee
Daniel J. Navarro
A Minimum Description Length Principle for Perception
385(26)
Nick Chater
Minimum Description Length and Cognitive Modeling
411(24)
Yong Su
In Jae Myung
Mark A. Pitt
Index 435