Muutke küpsiste eelistusi

E-raamat: Advances In Pattern Recognition And Artificial Intelligence

Edited by (Concordia Unv, Canada), Edited by (Concordia Unv, Canada), Edited by (Concordia Univ, Canada)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 81,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more. Chapters include works that centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.

Preface v
List of Contributors
xi
Chapter 1 Enhanced Lesion Detection in Breast MRI Using Parallel and Cascaded Integration of Deep Learning Models
1(22)
Ghazal Rouhafzay
Yonggang Li
Haitao Guan
Chang Shu
Rafik A.-Goubran
Pengcheng Xi
Chapter 2 A Survey on Peripheral Blood Smear Analysis Using Deep Learning
23(24)
Rabiah Alqudah
Ching Y. Suen
Chapter 3 End-to-End Generative Adversarial Network for Hand-Vein Recognition
47(14)
Huafeng Qin
Mounim A. El Yacoubi
Chapter 4 Diabetic Retinopathy Analysis Based on Retinal Fundus Photographs via Deep Learning
61(16)
Yan Xu
Yufang Tang
Xuezhou Wen
Ching Y. Suen
Chapter 5 Pattern Recognition in Handwriting
77(20)
Sheila Lowe
Chapter 6 A Deep Reinforcement Learning-based Study on Handwriting Difficulty Analysis
97(22)
Chandranath Adak
Bidyut B. Chaudhuri
Michael Blumenstein
Chapter 7 Gender Detection from Handwritten Documents Using the Concept of Transfer Learning
119(14)
Najla Al-Qawasmeh
Ching Y. Suen
Chapter 8 The Wartegg Test
133(12)
Graziella Pettinati
Chapter 9 A New Prediction Method for Credit Scoring Based on Sampling Reconstruction of Signal on Graph
145(16)
Qian Zhang
Zhihua Yang
Feng Zhou
Lihua Yang
Chapter 10 Optimal Choices of Features in Image Analysis
161(22)
Camille Kurtz
Nicole Vincent
Chapter 11 A Comprehensive Unconstrained, License Plate Database
183(10)
Nicola Nobile
Hoi Kei Phoebe Chan
Marleah Blom
Chapter 12 Classification of Spanish Criminal News using Neural Networks
193(20)
Mireya Tovar Vidal
Emmanuel Santos Rodriguez
Jose A. Reyes-Ortiz
Chapter 13 Predicting US Elections with Social Media and Neural Networks
213(18)
Ellison Yin Nang Chan
Adam Krzyzak
Ching Y. Suen
Chapter 14 Differences and Similarities learning for Unsupervised Feature Selection
231(28)
Tan Jun
Xinyi Li
Ning Bi
You Ning
Index 259