Muutke küpsiste eelistusi

E-raamat: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization: Dedicated to the Memory of Teuvo Kohonen / Proceedings of the 14th International Workshop, WSOM+ 2022, Prague, Czechia, July 6-7, 2022

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this collection, the reader can ?nd recent advancements in self-organizing maps (SOMs) and learning vector quantization (LVQ), including progressive ideas on exploiting features of parallel computing. The collection is balanced in presenting novel theoretical contributions with applied results in traditional ?elds of SOMs, such as visualization problems and data analysis. Besides, the collection further includes less traditional deployments in trajectory clustering and recent results on exploiting quantum computation. The presented book is worth interest to data analysis and machine learning researchers and practitioners, speci cally those interested in being updated with current developments in unsupervised learning, data visualization, and self-organization.


Sparse weighted K-means for groups of mixed-type variables.- Fast parallel search of Best Matching Units in Self-Organizing Maps.- Neural networks for spatial models.- Machine Learning and Data-Driven Approaches in Spatial Statistics : a case study of housing price estimation.- Modification of the Classification-by-Component Predictor Using Dempster-Shafer-Theory.- Inferring epsilon-nets of Finite Sets in a RKHS.- Steps Forward to Quantum Learning Vector Quantization for Classification Learning on a Theoretical Quantum Computer.- Application of Kohonen Maps in Predicting and Characterizing VAT Fraud in Southern Mozambique.- Visual insights from the latent space of generative models for molecular design.